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Abstract

Mining association rules is very popular in the data mining community. Most al-
gorithms designed for finding association rules start with searching for frequent

itemsets. Typically, in these algorithms, counting phases and pruning phases are
interleaved. In the counting phase, partial information about the frequencies of se-
lected itemsets is gathered. In the pruning phase as much as possible of the search
space is pruned, based on the counting information. We introduce frequent set ex-
pressions to represent (possible partial) information acquired in the counting phase.
A frequent set expression is a pair containing an itemset and a fraction that is a
lower bound on the actual frequency of the itemset. A system of frequent sets is
a collection of such pairs. We give an axiomatization for those systems that are
complete in the sense that they explicitly contain all information they logically im-
ply. Every system of frequent sets has a unique completion that actually represents
all knowledge that can be derived. We also study sparse systems, in which not for
every frequent set an expression is given. Furthermore, we explore the links with
probabilistic logics.
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1 Introduction

1.1 Association Rules

Association rules are one of the most studied topics in data mining. Since
their introduction [1], many algorithms have been proposed to find association
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rules [1,2,11].

We start with a formal definition of the association rule mining problem as
stated in [1]: Let I = {I1, I2, . . . , Im} be a set of symbols, called items . Let D
be a set of transactions , where each transaction T is a set of items, T ⊆ I,
and a unique transaction ID. We say that a transaction T contains X, a set of
some items in I, if X ⊆ T . The fraction of transactions containing X is called
the frequency of X. An association rule is an implication of the form X ⇒ Y ,
where X ⊆ I, Y ⊆ I, and X ∩ Y = φ. The rule holds in the transaction set
D with confidence c if the fraction of the transactions containing X, that also
contain Y is at least c. The rule X ⇒ Y has support s in the transaction set
D if the fraction of the transactions in D that contain X ∪ Y is at least s.

Most algorithms start with searching for itemsets that are contained in at
least a fraction s of the transactions. To optimize the search for these frequent
itemsets, the algorithms use the following monotonicity principle:

If X ⊆ Y , then the frequency of X will never be smaller than the frequency
of Y .

This information is then used to prune parts of the search space a-priori . To
exploit this monotonicity as much as possible, the “A-priori”-algorithm [2]
starts by counting the single itemsets. In the second step, we count only item-
sets {i1, i2} where {i1} and {i2} are both frequent. All other 2-itemsets are
pruned . In the third step, the algorithm proceeds with the 3-itemsets that con-
tain only frequent 2-itemsets as subsets. This iteration continues until no more
itemsets can be generated. The search of frequent itemsets is thus basically
an interleaving of a counting phase and a meta-phase. In the counting phase,
the frequencies of some predetermined itemsets, the so-called candidates are
counted. In the meta-phase the results of the counting phase are evaluated.
Based on the monotonicity principle, some itemsets are a-priori excluded.

Although the monotonicity of frequency is commonly used, there is to our
knowledge no previous work that discusses whether in the general case this
rule is complete, in the sense that it tells us everything we can derive from a
given set of frequencies.

1.2 Frequent Set Expressions

In this paper we consider the notion of a system of frequent sets . A system of
frequent sets contains (possibly incomplete) information about the frequency
of every itemset. For example, S = {φ::0.5, A::0.6, B::0.6, AB::0.1} is a sys-
tem of frequent sets. This system of frequent sets represents partial informa-
tion (e.g. obtained in counting phases.) In this system, A::0.6 expresses the
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knowledge that itemset A has a frequency of at least 0.6. The system S can
be improved. Indeed, we can conclude that AB::0.2 holds, since A::0.6 and
B::0.6 and there must be an overlap of at least 0.2 between the transactions
containing A and the transactions containing B. We can also improve φ::0.5,
because φ::1 always holds. Therefore, S is called incomplete. The completion of
a system represents the maximal information that can be assumed in the meta-
phase. The completion of S, denoted C(S), is {φ::1, A::0.6, B::0.6, AB::0.2}.
C(S) explicitly contains all information logically implied by S.

In this paper, we give three rules F1, F2, and F3 that characterize complete
systems of frequent sets; e.g. a system is complete iff it satisfies F1, F2, and
F3. We show that, after a small modification to F3, this axiomatization is
finite and every logical implication can be inferred/proved using these axioms.

We also address sparse systems . These are systems that do not contain a
frequent set expression for every itemset. We show that the axiomatization
can be adapted to handle such systems efficiently.

1.3 Outline

The structure of the paper is as follows. In Section 2 we sketch the framework.
In Section 3 we introduce frequent set expressions and systems of frequent sets.
In Section 4, an axiomatization for complete systems of frequent sets is given,
after introducing rare set expressions as an intermediate stage in the proofs.
In Section 5 we discuss how these axioms can be used as rules of inference,
and an algorithm for computing completion is given. Section 6 describes some
results about sparse systems and gives a revised set of axioms suited for sparse
systems. Section 7 discusses related work, in particular links with probabilistic
logics. Section 8 concludes the paper.

Parts of the results presented in this paper were already included in [17,4,5].

2 Framework

As discussed in the introduction, most algorithms for finding the frequent
itemsets fit more or less in the following framework:

1. C1 =initial set of candidate frequent itemsets
2. k = 1
3. while Ck 6= {} loop
4. Info=Count(Ck)
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5. Ck+1 =Generate(Info)
6. k = k + 1
7. end-loop

In the a-priori-algorithm, C1 is initialized to the set of single-itemsets (1). The
information obtained in the kth count-step is the frequency of all itemsets in
Ck (4). In the generate-step, we use the information obtained in the count-
steps to select exactly those k + 1-itemsets that have no infrequent subsets
(5). The other itemsets are pruned .

A-priori relies heavily on the monotonicity principle, stating that the frequency
of a set is always smaller than or equal to the frequencies of its subsets. In this
paper we concentrate on the derivation of information. In every algorithm,
an itemset K can be pruned if from the information gathered in the count-
ing phases can be inferred that the frequency of K must be lower than the
threshold. This inference can be seen as completing the information obtained
by counts. In this paper, we do not commit ourselves to a specific algorithm.
Instead, we concentrate on the following question:

Given a set of expressions, what information can be derived from it?

3 Systems of Frequent Sets

We formally define a system of frequent sets. Frequent set expressions describe
positive information about the frequencies of the itemsets.

To represent a databases with transactions, we use a matrix. The columns of
the matrix represent the items, and the rows represent the transactions. The
matrix contains a 1 in the (i, j)-entry if transaction i contains item j; else this
entry is 0. When R is a matrix whose columns represent the items in I, we say
that R is a matrix over I. In our running example we regularly refer to the
items with capital letters. With this notation, we get the following definition:

Definition 1 Let I = {I1, . . . , In} be a set of items, and R be a matrix over
I. The frequency of an itemset K ⊆ I in R, denoted freq(K,R) is the fraction
of rows in R that have a 1 in every column of K.

Example 2 In Fig. 1, a matrix is given, together with some frequencies. The
frequency of DEF is 0.2, because 2 rows out of 10 have a one in every column
of DEF . 2 Note that, unlike a relation, a matrix can have identical rows.

2 DEF denotes the set {D, E, F}.
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Matrix R

A B C D E F

1 0 1 0 1 1

1 0 1 0 1 1

0 1 0 1 1 0

1 1 1 0 0 1

1 0 0 1 0 1

0 1 0 1 1 1

1 1 0 1 1 1

0 0 1 0 0 1

1 1 1 0 1 0

1 0 0 1 0 1

freq(A,R) = 0.7,
freq(B,R) = 0.5,
freq(AB,R) = 0.3,
freq(DEF,R) = 0.2.

R satisfies A::0.5, AB::0.3,
and DEF ::0.1.
R does not satisfy A::0.8,
ABC::0.4, or DEF ::0.3.

Fig. 1. A matrix together with some frequent set expressions

3.1 Complete Sytems

We introduce a system of frequent sets as a collection of frequent set expres-
sions. Logical implication and completeness of systems are defined.

Definition 3 Let I = {I1, . . . , In} be a set of items.

• A frequent set expression over I is an expression K::pK with K ⊆ I and pK
a rational number with 0 ≤ pK ≤ 1.

• A matrix R over I satisfies K::pK, denoted R |= K::pK iff freq(K,R) ≥ pK.
Hence itemset K has frequency at least pK.

• A system of frequent sets over I is a collection

{
K⊆I

K::pK

of frequent set expressions, with one expression for each K ⊆ I.
• A matrix R over I satisfies the system S =

{
K⊆I

K::pK, denoted R |= S,

iff R satisfies all K::pK.
• A system of frequent sets S logically implies K::pK, denoted S |= K::pK,
iff every matrix that satisfies S, also satisfies K::pK. System S1 logically
implies system S2, denoted S1 |= S2, iff every K::p in S2 is logically implied
by S1.

• A system of frequent sets S =
{
K⊆I

K::pK is complete iff for each K::p

logically implied by S, p ≤ pK holds.
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Example 4 In Fig. 1, the matrix R satisfies A::0.6. R does not satisfy B::0.7.

3.2 Proof-matrices

Very important in the completeness proof of the axiomatization are the so-
called proof-matrices.

Definition 5 Let I be a set of items, S =
{
K⊆I

K::pK a system of frequent

sets, and L ⊆ I. A matrix M over I is a proof-matrix of L in S iff M |= S
and freq(L,M) = pL.

In order to show that a certain system S =
{
K⊆I

K::pK is complete, for

every K ⊆ I, we need to construct a proof-matrix MK for K in S. Suppose
S |= K::p. Then freq(K,MK) ≥ p, since MK satisfies S. Hence, p ≤ pK . Thus,
a proof-matrix for K is S shows that the frequency pK given in the system S
cannot be improved. 3

Example 6 Let I = {A,B,C,D,E, F}. Consider the following system: S ={
K⊆I

K::pK, where pA = 0.7, pB = 0.5, pAB = 0.3, pDEF = 0.2, and pK = 0

for all other itemsets K. The matrix in Fig. 1 satisfies S. S is not complete,
because in every matrix satisfying DEF ::0.2, the frequency of DE must be
at least 0.2, and S contains DE::0. Furthermore, S does not logically imply
EF ::0.5, since R satisfies S, and R does not satisfy EF ::0.5.

Consider the following system over I = {A,B,C}:

{φ::1, A::0.6, B::0.8, C::0.8, AB::0.6, AC::0.4, BC::0.6, ABC::0.4} .

This system is complete. In Fig. 2, a possible set of proof-matrices is given.

Notice that when a system is complete, it is not necessary that there exists one
matrix that is a proof-matrix for all itemsets at once. Consider for example
the following system:

{φ::1, A::0.5, B::0.5, C::0.1, AB::0, AC::0, BC::0, ABC::0} .

This system is complete. However, we will never find a matrix in which the
following six conditions are simultaneously true: freq(A) = 0.5, freq(B) = 0.5,
freq(C) = 0.1, freq(AB) = 0, freq(AC) = 0, and freq(BC) = 0, because due
to freq(A) = 0.5, freq(B) = 0.5, and freq(AB) = 0, every row has a 1 in A or

3 Observe the similarities with Armstrong relations in dependency theory [7].
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Proof-matrix for

B, C, BC, ABC

A B C

1 1 0

1 1 1

1 0 1

1 1 1

0 1 1

Proof-matrix for

A, AB, AC

A B C

1 1 0

1 1 1

1 1 1

0 1 1

0 1 1

ABC::0.4

AB::0.6 AC::0.4 BC::0.6

A::0.6 B::0.8 C::0.8

φ::1

"
""

b
bb

b
bb

"
""

"
""

b
bb

"
""

b
bb

Fig. 2. Proof-matrices for a system of frequent sets

in B. So, every row having a 1 in C has also a 1 in A or a 1 in B, and thus
violates either freq(AC) = 0, or freq(BC) = 0.

3.3 Completion

When a system S is not complete, we can “improve” this system. Suppose
S =

{
K⊆I

K::pK is not complete. Then there exists a frequent set expression

K::p′k with p′K > pK that is logically implied by S. We can improve S by
replacing K::pK by K::p

′
K . The next theorem states that for every system S,

there exists a unique complete system C(S) logically implied by S.

Theorem 7 Let I = {I1, . . . , In} be a set of items, and S =
{
K⊆I

K::pK be

a system of frequent sets. There exists a unique system C(S), the completion
of S, such that S |= C(S), and C(S) is a complete system.

PROOF. Let LK = {pK | S |= K::pK}. LK always contains its own supre-
mum: suppose a matrix M satisfies S. Let p := freq(K,M). M satisfies S,
hence for all pK ∈ LK , p ≥ pK holds, and therefore p ≥ sup(LK) holds.
Hence, every matrix satisfying S, also satisfies K::sup(LK), and thus S |=

K::sup(LK). It is now straightforward that the system
{
K⊆I

K::sup(LK) is

the unique completion of S. 2

Example 8 I = {A,B,C}. The system

S1 = {φ::1, A::0.6, B::0.8, C::0.8, AB::0.6, AC::0.4,BC::0.6, ABC::0.4}
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is the unique completion of the system

S2 = {φ::0.8, A::0.6, B::0.8, C::0.8, AB::0.6, AC::0.4,BC::0.4, ABC::0.4} .

BC::0.6 is implied by S2, since there is an overlap of at least 0.6 between the
rows having a 1 in B and the rows having a 1 in C.

4 Axiomatization

We give an axiomatization for frequent sets. An axiomatization in this context
is a set of rules that are satisfied by the system if and only if it is complete.
In order to simplify the notation we first introduce rare sets. In Section 5 we
will show how we can build finite proofs for all logical implications using the
axioms.

4.1 Systems of Rare Sets

Definition 9 Let I = {I1, . . . , In} be a set of items.

• Let R be a matrix over I. The rareness of an itemset K ⊆ I in R, denoted
rare(K,R), is the fraction of rows in R that have a 0 in at least one column
of K.

• A rare set expression over I is an expression K:pK with K ⊆ I and pK a
rational number with 0 ≤ pK ≤ 1.

• A matrix R over I satisfies K:pK, denoted R |= K:pK, iff rare(K,R) ≤ pK.
Hence itemset K has rareness at most pK.

• A system of rare sets over I is a collection
{
K⊆I

K:PK of rare set expres-

sions, with one expression for each K ⊆ I.
• A matrix R over I satisfies the system S =

{
K⊆I

K:pK, denoted R |= S, iff

R satisfies all K:pK.
• A system of rare sets S logically implies K:p, denoted S |= K:p iff every
matrix that satisfies S also satisfies K:p. System S1 logically implies system
S2, denoted S1 |= S2, iff every K:p in S2 is logically implied by S1.

• A system of rare sets S =
{
K∈I

K:pK is complete iff for each K:p logically

implied by S, pK ≤ p holds.

Example 10 In Fig. 1, the matrix R satisfies A:0.4, because fewer than 0.4
of the rows have 0 in A. R does not satisfy B:0.3. Let I = {A,B}. The system
{φ:0.4, A:0.3, B:0.4,AB:0.8} is not complete. The unique completion of this
system is {φ:0, A:0.3, B:0.4,AB:0.7}.
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The next proposition connects rare sets with frequent sets. The connection
between the two is straightforward. Indeed: the rows that have a zero in at
least one column on K are exact the complement of the rows having only ones
in these columns.

Proposition 11 Let I = {I1 . . . In} be a set of items. For every matrix R
over I and every subset K of I holds that

• freq(K,R) + rare(K,R) = 1.
• R satisfies K:pK iff R satisfies K::1− pK.

Notice that a proof-matrix M for an itemset K in a system of frequent
sets

{
K⊆I

K::pK is also a proof-matrix for K in the system of rare sets
{
K⊆I

K:1− pK .

In the following subsection we prove an axiomatization for complete systems
of rare sets. From this axiomatization, we can easily derive an axiomatization
for frequent sets, using Proposition 11.

4.2 Axiomatization of Rare Sets

We first define bags.

Definition 12 Let S be a finite set, and s, s1, . . . , sk ∈ S.

(a) A bag over S is a total function from S into N. Intuitively, a bag is a set in
which elements can appear more then once.

(b) M = 〈s1, . . . , sk〉 denotes the bag over S where for all s ∈ S, M(s) is the
number of occurrences of s in the list 〈s1, . . . , sk〉. As a shorthand, we denote
c occurrences of s by c · s.

Let M,N be bags over S.

(c) |M| :=
∑

s∈SM(s) is the cardinality of M.
(d) s appears n times inM iff M(s) = n. s ∈M iff M(s) ≥ 1.
(e) The bag-union M

⋃
N is defined as follows: for all t ∈ S, (M

⋃
N )(t) =

M(t) +N (t).
(f) Associate with each element s ∈ S a real number ns.

∑
s∈M ns is shorthand

for
∑

s∈SM(s)ns.
(g) Let φ(m) be a condition on m. 〈m ∈M | φ(m)〉 denotes the bag K with for

each s ∈ S, K(s) =M(s) if φ(s) holds; else K(s) = 0.
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Let K be a bag over the subsets of S; i.e., the elements of K are subsets of S.

(h)
⋃
K is the following bag over S: ∀s ∈ S,

⋃
K(s) is the number of occurrences

of sets in K that contain s.
(i) The degree of s in K, denoted deg(s,K) is (

⋃
K)(s). The minimal degree of

K, denoted mdeg(K), is mins∈K(deg(s,K)).

Example 13 K = 〈 {a, b} , 2 · {b, c} , 2 · {b, d} 〉 is a bag over the subsets of
{a, b, c, d}. |K| = 5,

⋃
K = 〈a, 5 ·b, 2 ·c, 2 ·d〉, deg(b,K) = 5, and mdeg(K) = 1.

Theorem 14 Let S =
{
K⊆I

K::pK be a system of rare sets over I. The fol-

lowing two statements are equivalent:

• S is a complete system.
• S satisfies

R1 pφ = 0
R2 If K2 ⊆ K1, then pK2

≤ pK1

R3 Let K ⊆ I, M a bag of subsets of K. Then

pK ≤

∑
M∈M pM
k

,

with k = mdeg(M). 4

PROOF. Soundness The soundness of R1 and R2 is straightforward.
For R3, let S =

{
K∈I

K:pK be a complete system, and letM be a bag over

the subsets of K ⊆ I. We prove that
∑

M∈M
pM

k
≥ pK , with k = mdeg(M).

Let R be a matrix over I such that R |= S. Let for all Z ⊆ I, DZ denote the
bag 〈t row in R | (∃z ∈ Z)t[z] = 0〉. Every row t ∈ DK appears in at least k
of the following bags: 〈DM | M ∈ M〉. Therefore, k |DK | ≤

∑
M∈M |DM | ≤

n
∑

M∈M pM . Since S is complete, and R was arbitrary, we can conclude pK ≤∑
M∈M

pM

k
.

Completeness is proved in Appendix A. 2

Example 15 Consider the following systems:

S1 = { φ:0.2, A:0.8, B:0.4, C:0.4, AB:0.4, AC:0.4, BC:0.8, ABC:1 },

S2 = { φ:0, A:0.8, B:0.4, C:0.4, AB:0.4, AC:0.4, BC:0.8, ABC:1 },

S3 = { φ:0, A:0.4, B:0.4, C:0.4, AB:0.4, AC:0.4, BC:0.8, ABC:1 },

S4 = { φ:0, A:0.4, B:0.4, C:0.4, AB:0.4, AC:0.4, BC:0.8, ABC:0.8 }.

S1 is not complete, since φ:0.2 violates R1. S2 is not complete, since AB:0.4
and A:0.8 violate R2. The system S3 is not complete, since AB:0.4, AC:0.4,

4 If k = 0, the trivial condition pK ≤ 1 is assumed.
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and ABC:1 violate R3. The system S4 is complete, since it satisfies R1, R2,
and R3. S4 is the unique completion of S1, S2, and S3.

4.3 Why bags are necessary

In the previous section we proved that R1, R2, and R3 are sound and com-
plete for complete systems of rare set expressions. In rule R3, we state a
condition that has to be tested for all bags over the subsets of all itemsets K.
Later on we will show that it is not necessary to test all bags. We will describe
a finite class of bags that is sufficient to test. Here we prove that in rule R3,
we cannot change the condition “M is a bag of subsets of K” into “M is a
set of subsets of K”. Therefore we will prove that R1, R2, and

R3 = Let K ⊆ I,M a subset of 2K . Then

pK ≤

∑
M∈M pM
k

,

with k = mdeg(M)

are not complete.

Consider the following system of rare sets:

S =





φ : 0, AB : 0.4, CD : 0.8, ABCD : 1

A : 0.4, AC : 0.4, ABC : 0.8,

B : 0.4, AD : 0.4, ABD : 0.8,

C : 0.4, BC : 0.8, ACD : 0.8,

D : 0.4, BD : 0.8, BCD : 0.8,





(1)

This system is not complete as can be seen by R3 with K = ABCD and

M = 〈AB,AC,AD, 2 ·BCD〉.

Application of R3 gives:

pABCD ≤
pAB + pAC + pAD + 2pBCD

3
=
14

15
.

However, we will show next that S satisfies R3.

Lemma 16 Let I be a finite set of items and for each K ⊆ I, pK ∈ [0, 1]. Let
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S1, S2 ⊆ 2
I , and S1 ∩ S2 = φ. If mdeg(S1) +mdeg(S2) = mdeg(S1 ∪ S2), then

it holds that
∑

M∈(S1∪S2) pM

mdeg(S1 ∪ S2)
≥ min

(∑
M∈S1

pM
mdeg(S1)

,

∑
M∈S2

pM
mdeg(S2)

)
.

PROOF. Let md1 = mdeg(S1), md2 = mdeg(S2), md∪ = mdeg(S1 ∪ S2).
Without loss of generality, we can assume that

∑
M∈S1

pM
md1

≤

∑
M∈S2

pM
md2

.

∑
M∈(S1∪S2) pM

md∪
=

∑
M∈S1

pM
md∪

+

∑
M∈S2

pM
md∪

=

∑
M∈S1

pM
md1

md1

md∪
+

∑
M∈S2

pM
md2

md2

md∪

≥

∑
M∈S1

pM
md1

md1

md∪
+

∑
M∈S1

pM
md1

md2

md∪

=

∑
M∈S1

pM
md1

.

2

Proposition 17 The system of rare sets S given in (1) satisfies R3.

PROOF. Consider the following three matrices.

M1

A B C D

1 1 1 1

1 1 0 1

1 0 1 1

1 0 1 0

1 1 0 0

M2

A B C D

1 1 1 1

1 1 1 1

1 1 1 1

0 1 1 1

0 1 1 1

M3

A B C D

1 1 1 1

1 0 0 1

1 0 0 1

1 1 1 0

1 1 1 0

S

φ:0 BC:0.8

A:0.4 BD:0.8

B:0.4 CD:0.8

C:0.4 ABC:0.8

D:0.4 ABD:0.8

AB:0.4 ACD:0.8

AC:0.4 BCD:0.8

AD:0.4 ABCD:1

M1 is a proof-matrix for B,C,D,AB,AC,AD,BC,ABC, and BCD in S,M2

is a proof-matrix for A in S, and M3 is a proof-matrix for ABD,ACD,BD,
and CD is S.
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These proof-matrices show for all rare set expressions except for ABCD:1 that
the system S cannot be improved. Since R1,R2,R3 are sound, the only way
in which S can violate R1,R2,R3 is in ABCD with rule R3. Therefore,
to prove the proposition, we need to show that for every set L of subsets

of {A,B,C,D}, the sum
∑

K∈L
pK

mdeg(L)
is at least 1, and thus pABCD cannot be

improved with rule R3.

Consider the system S ′ that we get by replacing AB:0.4 by AB:0.8 in S.
S ′ is complete. M1 is a proof-matrix for B,C,D,AC,AD,BC,ABC, and
BCD in S ′, M2 is a proof-matrix for A in S ′, and M3 is a proof-matrix for
ABD,ACD,BD, and CD is S ′. Two proof-matrices M4, and M5 for respec-
tively AB and ABCD in S ′ are given next.

M4

A B C D

1 0 1 1

1 0 1 1

1 1 1 1

0 1 1 1

0 1 1 1

M5

A B C D

1 0 1 1

1 0 1 1

1 1 0 1

1 1 1 0

0 1 1 1

S ′

φ:0 BC:0.8

A:0.4 BD:0.8

B:0.4 CD:0.8

C:0.4 ABC:0.8

D:0.4 ABD:0.8

AB:0.8 ACD:0.8

AC:0.4 BCD:0.8

AD:0.4 ABCD:1

This completeness of system S ′ shows that for every set L over the subsets

of ABCD that does not contain AB, the sum
∑

K∈L
pK

mdeg(L)
will be bigger than

or equal to 1, because R3 is sound, and S ′ agrees with S on the frequency
of every itemset except for AB, and thus, every expression ABCD:pABCD,
derived from S without using AB, is also implied by S ′.

Since every permutation of B,C,D leaves S unchanged, the same result can
be proven for AC and AD.

Consider also the system S ′′ that we get by replacing BCD:0.8 by BCD:1 in
the system S. Again we can show that the resulting system S ′′ is complete,
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with the following proof-matrix M6 for BCD and ABCD in S ′′.

M6

A B C D

1 0 1 1

1 0 1 1

1 1 0 1

1 1 0 1

1 1 1 0

S ′′

φ:0 BC:0.8

A:0.4 BD:0.8

B:0.4 CD:0.8

C:0.4 ABC:0.8

D:0.4 ABD:0.8

AB:0.4 ACD:0.8

AC:0.4 BCD:1

AD:0.4 ABCD:1

Therefore, for every set L of subsets of {A,B,C,D} that is not a superset

of {AB,AC,AD,BCD}, the sum
∑

K∈L
pK

mdeg(L)
is at least 1. We will now use

Lemma 16 to argue that every superset L of {AB,AC,AD,BCD} will also
give a sum of at least 1. For every possible superset L of {AB,AC,AD,BCD}
we will identify a subset L′ such that L′ has the same degree in A,B,C, or
D. Then we can split L into L′ and L′′ = L− L′, and mdeg(L) = mdeg(L′) +
mdeg(L′′). According to Lemma 16, the sum over L will be bigger than the
minimum of the sum over L′ and the sum over L′′. Since in all cases neither L′

nor L′′ will be supersets of {AB,AC,AD,BCD}, both sums will be at least
1.

L = {AB,AC,AD,BCD} pAB+pAC+pAD+pBCD

2
= 1

A ∈ L L′ = {A,BCD} B ∈ L L′ = {B,AC,AD,BCD}

C ∈ L L′ = {C,AB,AD,BCD} D ∈ L L′ = {D,AB,AC,BCD}

BC ∈ L L′ = {AB,AC,AD,BC} ABC ∈ L L′ = {AD,ABC,BCD}

ABD ∈ L L′ = {AC,ABD,BCD} ACD ∈ L L′ = {AB,ACD,BCD}

ABCD ∈ L L′ = {ABCD}

2
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4.4 Axiomatization of Frequent Sets

From Proposition 11, we can easily derive the following axiomatization for
frequent sets.

Theorem 18 Let S =
{
K⊆I

K::pK be a system of frequent sets over I. S is

a complete system iff S satisfies

F1 pφ = 1,
F2 If K2 ⊆ K1, then pK2

≥ pK1
,

F3 Let K ⊆ I, M a bag of subsets of K. Then

pK ≥ 1−
|M| −

∑
M∈M pM
k

,

with k = mdeg(M) .

5 Computability

In the rest of the text we continue working with rare sets. The results obtained
for rare sets can, just like the axiomatization, easily be carried over to frequent
sets.

In the previous section we introduced and proved an axiomatization for com-
plete systems of rare and frequent sets. There is however still one problem
with this axiomatization. R3 states a property that has to be checked for all
bags over the subsets of K. This number of bags is infinite. In this section
we show that it suffices to check only a finite number of bags: the minimal
multi-covers. We show that the number of minimal multi-covers over a set is
finite, and that they can be computed.

We also look at the following problem: when an incomplete system is given, can
we compute its completion using the axioms?We show that this computation is
indeed possible. We use R1, R2, and R3 as inference rules to adjust rareness
values in the system; whenever we detect an inconsistency with one of the
rules, we improve the system. When the rules are applied in a systematic way,
this method leads to a complete system within a finite number of steps.

Actually, the completion of a system of frequent sets can be computed in an
obvious way by using linear programming [10]. For all sets K, we can minimize
pK with respect to a system of inequalities expressing that the frequencies obey
the system of rare sets. Since the system of inequalities has polynomial size
in the number of frequent itemsets, this algorithm is polynomial in the size of
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the system. However, as stated in [8], an axiomatization has as advantage that
it provides human-readable proofs, and that, when the inference is stopped
before termination, still a partial inference of the frequencies is provided.

5.1 Minimal Multi-covers

In the axiomatization for complete systems of rare sets, R3 expresses a con-
dition that has to be checked for every bag over the subsets of every itemset.
Since the number of bags is infinite, rule R3 cannot be used in a practical
implementation. Therefore, we will show that it is not necessary to check every
bag , but it suffices to check all minimal bags , which are finite in number.

Definition 19

• A k-cover of a set S is a bag K over the subsets of S such that for all s ∈ S,
deg(s,K) = k.

• A bag K over the subsets of a set S is a multi-cover of S if there exists an
integer k such that K is a k-cover of S.

• A k-cover K of S is minimal if it cannot be decomposed as K = K1
⋃
K2,

with K1 and K2 respectively k1- and k2-covers of S, K1 and K2 not empty.

Example 20 Let K = {A,B,C,D}. 〈AB,BC,CD,AD,ABCD〉 is a 3-cover
of K. It is not minimal, because it can be decomposed into the following two
minimal multi-covers of K: 〈AB,BC,CD,AD〉 and 〈ABCD〉.

The new rule that replaces R3 states that it is not necessary to check all
bags; we only need to check the minimal multi-covers. This adaptation gives
the following R3

′:

R3
′ Let K ⊆ I,M a minimal k-cover of K. Then

pK ≤

∑
M∈M pM
k

.

Theorem 21 Let S be a system of rare sets over I. The following statements
are equivalent:

(1) S satisfies R1,R2, and R3.
(2) S satisfies R1,R2, and R3

′.

Theorem 22 Let K be a finite set. The minimal multi-covers of K are finite
in number and computable.

The proof of these two theorems can be found in Appendix B.
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5.2 Computing the Completion of a System

We prove that by applying R1, R2, and R3 as rules, we can compute the
completion of any given system.

Applying for example rule R2 means that whenever we see a situation K1 ⊆
K2, and the system states K1:pK1

and K2:pK2
, and pK2

< pK1
, we improve the

system by replacing K1:pK1
by K1:pK2

. R1 can only be applied once; R2 and
R3 never create situations in which R1 can be applied again.

R2 is a top-down operation, in the sense that the rareness values of smaller
sets is adjusted using values of bigger sets. So, for a given system S we can
easily reach a fixpoint for rule R2, by going top-down; we first try to improve
the frequencies of the biggest itemsets, before continuing with the smaller
ones.

R3 is a bottom-up operation; values of smaller sets are used to adjust the
values of bigger sets. So, again, for a given system S, we can reach a fixpoint
for rule R3, by applying the rule bottom-up.

A trivial algorithm to compute the completion of a system is the following:
apply R1, and then keep applying R2 and R3 randomly until a fixpoint is
reached. The limit of this approach yields a complete system, but it is not
true that always a fixpoint will be reached within a finite number of steps. In
Fig. 3 an infinite run is illustrated. The completion of the system is all rareness
values equal to 0, because for every matrix satisfying the system, none of the
rows have a 0 in AB, and none have a 0 in BC, so there are no 0’s at all
in the matrix. When we keep applying the rules as in Fig. 3, we never reach

this fixpoint, since in step 2n, the value for ABC is
(

1
2

)n
. We now will show

that when we apply the rules R2 and R3 in a systematic way, we always
reach a fixpoint within a finite number of steps. This systematic approach is
illustrated in Fig. 4. First, we apply R2 top-down until we reach a fixpoint
for R2, and next, we apply R3 bottom-up until we reach a fixpoint for R3.
The systematic approach is written down in Fig. 5. We prove that for every
system these two meta-steps are all there is needed to reach the completion.

Definition 23 Let I be a set of items, J ⊆ I, and S =
{
K⊆I

K:pK a system

of rare sets over I. The projection of S on J , denoted Proj (S, J), is the system

S ′ =
{
K⊆J

K:pK.

Lemma 24 Let I be a set of items, J ⊆ I, and S =
{
K⊆I

K:pK a system of

rare sets over I.

(1) If S is complete, then also Proj (S, J) is complete.
(2) if S satisfies R2, then Proj (C(S), J) = C(Proj (S, J)) .
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Fig. 3. “Random” application of the rules can lead to infinite loops
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Fig. 4. Systematic application of the rules avoids infinite computations

PROOF. (1) is straightforward.

(2) Let C(Proj (S, J)) =
{
K⊆J

K:pK . Then, for every K ⊆ J , we can con-

struct a proof-matrix RK , such that rare(K,RK) = pK , and for all L ⊆ J ,
rare(L,RK) ≤ pL.

5 We will now extend this matrix RK over J to a proof-
matrix R̂K of K over I. R̂K contains the same number of rows as RK , and
is formed by adding r(i) = 1 to each row r ∈ RK , for all i ∈ I − J . R̂K

satisfies S, since it is constructed in such a way that for all L ⊆ I holds that

5 The existence of this proof-matrix can easily be derived from the proof of the
completeness of R1, R2 and R3.
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Complete(S) T−Down(S)
pφ = 0 for i = n downto 1 do
T−Down(S) for all itemsets K of cardinality i do
B−Up(S) make pK = minK⊆L(pL)

B−Up(S)
for i = 1 to n do

for all itemsets K of cardinality i do

make pK = min
K, minimal k-cover of K

(∑
K′∈K

pK′

k

)

Fig. 5. Algorithm Complete for finding the completion of the system

S =
{
K⊆I

K:pK over I = {I1, . . . , In}

rare(L, R̂K) = rare(L ∩ K,RK) ≤ pL∩K ≤(R2) pL. Therefore, C(S) must
contain K:pK , since R̂K is a proof-matrix for K:pK . 2

Theorem 25 The algorithm in Fig. 5 computes the completion of the system
of rare sets S.

PROOF. We will prove this theorem by induction on |I|. In the base case
|I| = 0 the condition is trivially fulfilled. Suppose the theorem holds for
1, . . . , |I| − 1. B−Up(Proj (T−Down(S), J)) = Proj (B−Up(T−Down(S)), J)
and T−Down(Proj (T−Down(S), J)) = Proj (T−Down(S), J) with J ⊆ I.
Therefore, for all J ⊂ I holds:

Proj (C(S), J) = Proj (C(T−Down(S)), J) (S |= T−Down(S))

= C(Proj (T−Down(S), J)) (Lemma 24)

= B−Up(Proj (T−Down(S), J)) (Induction hypothesis)

= Proj (B−Up(T−Down(S)), J) (R3 only uses subsets)

We only need to show now that the rareness value for I in B−Up(T−Down(S))
equals the rareness value in C(S). This equality is straightforward, since all
other rareness values between these two systems are equal, and I can only be
adjusted by the bottom-up rule R3, and this bottom-up rule is applied in the
last step of B−Up(.). 2

6 Sparse Systems

Definition 26 Let I be a set of items.

• A sparse system of rare sets is a collection

{
K∈P

K:pK
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of rare set expressions, with P ⊆ 2I . Hence, not every subset of I has to be
present in the system.

• A matrix R over I satisfies a sparse system S iff R satisfies all K:pK,
K ∈ P .

• A sparse system S logically implies a rare set expression K:p, iff every
matrix that satisfies S, also satisfies K:p.

• A sparse system
{
K∈P

K:pK is complete if for all K:p with K ∈ P , that

are logically implied by the system, pK ≤ p holds.

The following proposition says that ever complete sparse system can be ex-
tended to a full system.

Proposition 27 Let I be a set of items, and S =
{
K∈P

K:pK be a sparse

system. The following two statements are equivalent:

• S is complete
• There exists a complete full system S =

{
K⊆I

K:p̂K, such that for all K ∈

P , pK = p̂K holds.

PROOF. (⇒) Let R be an arbitrary system satisfying S. Then R satisfies

the system Ŝ =
{
K⊆I

p:qK , with qK = pK if K ∈ P , and qK = 1 else. Hence, R

satisfies the complete system S = C(Ŝ) =
{
K⊆I

K:cK . Therefore, R satisfies

the sparse system
{
K∈P

K:cK . This system has to be equal to S, because S is

complete, and cK ≤ pK for all K ⊆ I.
(⇐) S is complete. Therefore, for every K ∈ P , there exists a proof-matrix
RK such that RK satisfies S, and rare(K,RK) = p̂K . Since RK also satisfies
S, S must be complete. 2

The proposition leads to the following algorithm for computing the completion
of the sparse system S =

{
K∈P

K:cK

(1) Let F =
{
K⊆I

K:pK , with pK = cK if K ∈ P , else pK = 1.

(2) Compute the completion C(F ) =
{
K⊆I

K:p′K of F with the methods in

Section 5.
(3) Let C(S) =

{
K∈P

K:p′K .

However, it is clear that when the number of sets in P is small, this approach
is not very efficient. Suppose that we are given a sparse system with |P | = m
rare set expressions over a set with |I| = n items. To compute the completion,
we calculate the completion of a system with 2n expressions, where the input
contained m expressions. The following proposition shows that there are more
efficient ways to calculate the completion of a sparse system. It shows that we
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do not need all subsets of I.

Theorem 28 The following are equivalent:

(1) The sparse system S = {K1:p1, . . . , Kn:pn} is complete
(2) S satisfies

S1 pφ = 0
S2 If K2 ⊆ K1, then pK2

≤ pK1

S3 Let M be a minimal k-cover of Ki. Then

pKi
≤

∑
M∈MminM⊆Kj

(pKj
)

k
.

(3) S satisfies
S1 pφ = 0
S2 If K2 ⊆ K1, then pK2

≤ pK1

X Let M be a bag over {Kj ∩K | 0 ≤ j ≤ n} with minimal degree k.
Then

pK ≤

∑
M∈MminM⊆Kj

(pKj
)

k
.

The proof is in Appendix C.

6.1 Application of Sparse Systems

Suppose only the frequencies for the single-itemsets are given, and we want
to derive a lower bound on itemset K. Using a sparse system, the problem is
equivalent to finding the completion of the sparse system

S =
{
k∈I

{k} ::pk ∪
{
K::0.

It is easy to see that C(S) contains K:: (
∑

k∈K pk − (k − 1)), since 〈 {k} | k ∈
K〉 is the only minimal cover of K using the single-itemsets.

7 Related Work

In artificial intelligence literature, probabilistic logic is studied intensively. The
link with this paper is that the frequency of an itemset I can be seen as the
probability that a randomly chosen transaction from the transaction database
satisfies I; i.e., we can consider the transaction database as an underlying
probability structure.
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Nilsson introduced in [16] the following probabilistic logic problem: given a
finite set of m logical sentences S1, . . . , Sm defined on a set X = {x1, . . . , xn}
of n boolean variables with the usual boolean operators ∧,∨, and ¬, together
with probabilities p1, . . . , pm, does there exists a probability distribution on
the possible truth assignments of X, such that the probability of Si being true,
is exactly pi for all 1 ≤ i ≤ m. Georgakopoulos et al. prove in [9] that this
problem, they suggest the name probabilistic satisfiability problem (PSAT),
is NP-complete. This problem, however, does not apply to our framework.
In our framework, a system of frequent sets can always be satisfied. Indeed,
since a system only gives lower bounds on the frequencies, the system is always
satisfied by a transaction database where each transaction contains every item.

Another, more interesting problem, also stated by Nilsson in [16], is that of
probabilistic entailment . Again a set of logical sentences S1, . . . , Sm, together
with probabilities p1, . . . , pm is given, and one extra logical sentence Sm+1,
the target. It is asked to find best possible upper and lower bounds on the
probability that Sm+1 is true, given S1, . . . , Sm are satisfied with respective
probabilities p1, . . . , pm. The interval defined by these lower and upper bounds
forms the so-called tight entailment of Sm+1. It is well known that both PSAT
and probabilistic entailment can be solved nondeterministically in polynomial
time using linear programming techniques. In our framework, a complete sys-
tem of frequent sets is a system that only contains tight frequent expressions;
i.e., the bounds of the frequent expressions in the complete system are the
best possible in view of the system, and as such, completeness corresponds to
the notion of tight entailment.

For a comprehensive overview of probabilistic logic, probabilistic entailment
and various extensions, we refer to [12,13]. Nilsson’s probabilistic logic and
entailment are extended in various ways, including assigning intervals to logical
expressions instead of exact probability values and also considering conditional
probabilities [8][15].

In [6], Fagin et al. study the following extension. A basic weight formula is
an expression a1w(φ1) + . . . + akw(φk) ≥ c, where a1, . . . , ak and c are inte-
gers and φ1, . . . , φk are propositional formulas, meaning that the sum of all
ai times the weight of φi is greater than or equal to c. A weight formula is a
boolean combination of basic weight formulas. The semantics are introduced
by an underlying probability space. The weight of a formula corresponds with
the probability that it is true. The main contribution (from the viewpoint of
our paper) of [6] is the description of a sound and complete axiomatization for
this probabilistic logic. The logical framework in our paper is embedded into
the logic in [6]. Indeed, if we introduce a propositional symbol Pi for each item
i, the frequent set expression K::pK can be translated as w(

∧
i∈K Pi) ≥ pK . As

such, by results obtained in [6], the implication problem in our framework is
guaranteed to be decidable. Satisfiability, and thus also the implication prob-
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lem, are NP-complete in Fagin’s framework. Our approach differs from Fagin’s
approach in the sense that we only consider situations where for all expressions
a probability is given and that we only consider conjunctive expressions.

Also in [8], axioms for a probabilistic logic are introduced. However, the au-
thors are unable to prove completeness of the axioms. For a restricted sub-
language (Type-A problems), they prove that their set of axioms is complete.
However, this sub-language is not sufficient powerful to express frequent item-
set expressions.

On the other side of the spectrum, we have related work within the context
of data mining. There have been attempts to prove some completeness results
for itemsets in this area. One such attempt is described shortly in [14]. In
the presence of constraints on the allowable itemsets, the authors introduce
the notion of ccc-optimality 6 . ccc-optimality can intuitively be understood as
“the algorithm only generates and tests itemsets that still can be frequent,
using the current knowledge.” Our approach however, is more general, since
we do not restrict ourselves to a particular algorithm.

In [3], the author considers a sound rule for inferencing lower bounds. Using
this bound, one can discover large frequent patterns without having to consider
all subsets first. This observation leads to an efficient algorithm for finding
large itemsets, called Max-Miner. No attempt however is known to us in the
context of data mining, that studies in a systematic way what we can derive
from an arbitrary set of frequent itemsets.

8 Conclusion

We presented an axiomatization for complete systems of frequent sets. As
an intermediate stage in the proofs, we introduced the notion of a system
of rare sets. The axiomatization for rare sets contains three rules R1, R2,
and R3. From these rules we easily derive the axiomatization, F1, F2, and
F3 for frequent sets. Because rule R3 yields a condition that needs to be
checked for an infinite number of bags, we replaced R3 by R3’. We showed
that the completion of a system can be computed by applying R1, R2, and
R3’ as inference rules. If these rules first are applied top-down, and then
bottom-up, the completion is reached within a finite number of steps. We also
studied sparse systems, where not for every itemset a rareness was given. We
adjusted the rules R1, R2, and R3 such that a more efficient calculation of
the completion is possible.

6 ccc-optimality stands for Constraint Checking and Counting-optimality
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A Proof of Theorem 14

Lemma 29 Let S =
{
K⊆I

K:pK be a system that satisfies R1 and R2. If for

all K ⊆ I, the system
{
pK − pL ≤

∑

a∈K

Xa −
∑

a∈L

Xa ≤ pK , ∀L ⊆ K (A.1)

has a rational solution, then S is complete.

PROOF. Let K ⊆ I. We show that there exists a proof-matrix R for K. Let
(∀a ∈ K)Xa = βa be a solution of (A.1). We have (∀a ∈ K)0 ≤ βa ≤ 1, and∑

a∈K βa = pK ≤ 1 (from the case L = {}.) Let R be a matrix satisfying: (a)
a fraction βa of the rows has a 0 in column a, and a 1 elsewhere, with a ∈ K;
(b) a fraction 1−

∑
a∈K βa of the rows has a 1 in all columns. Because all βa’s

are rational, such a matrix exists. R is a proof-matrix for K:pK . 2

Lemma 30 Given a set of items I and given aK , bK, positive rational num-
bers, for every non-empty K ⊆ I. Consider the following system of inequali-
ties:

aK ≤
∑

i∈K

Xi ≤ bK , ∀L ⊆ K

This system has a solution (x1, . . . , x|I|), xi rational, iff for all K and L, bags
of subsets of I with

⋃
K =

⋃
L it is true that

∑
K∈K aK ≤

∑
L∈L bL.

PROOF. We will use induction on |I|.

|I| = 0 Trivially fulfilled.
General case Suppose the lemma holds for 1, 2, . . . , |I| − 1. Let 1 ∈ I, and

UB := {(
∑

L∈L bL −
∑

K∈K aK)/α |
⋃
K ∪ 〈α · 1〉 =

⋃
L}

LB := {(
∑

L∈L aL −
∑

K∈K bK)/α |
⋃
K ∪ 〈α · 1〉 =

⋃
L}

(A.2)
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We show that max(LB) ≤ min(UB). Let K,L, α,K′,L′, α′ be such that

⋃
K ∪ {α · 1} =

⋃
L, and

⋃
K′ ∪ {(α′) · 1} =

⋃
L′.

Then
⋃
(α′L ∪ αK′) =

⋃
(αL′ ∪ α′K) is true. Therefore

α′
∑

L∈L

aL + α
∑

K∈K′
aK ≤ α

∑

L∈L′
bL + α′

∑

K∈K

bK ,

and thus

(
∑

L∈L

aL −
∑

K∈K

bK)/α ≤ (
∑

L∈L′
bL −

∑

K∈K′
aK)/α

′.

Choose now β1 rational s.t. max(LB) ≤ β1 ≤ min(UB).
Consider the following system A.3(X1 has been replaced by β1), a

′
K =

max(aK , a(K∪{1})−β1), and b
′
K = min(bK , b(K∪{1})−β1), for all K ⊆ I−{1}.



a

′
K ≤

∑

k∈K

Xk ≤ b′K , ∀K ⊆ I − {1} (A.3)

We use induction to show this system has a solution. Therefore, we need to
show that whenever

⋃
K =

⋃
L,

∑

K∈K

max(aK , aK∪{1} − β1) ≤
∑

L∈L

min(bL, bL∪{1} − β1) (A.4)

holds. Let K = K′
⋃
K′′, L = L′

⋃
L′′, where

K′ = 〈K ∈ K | aK < aK∪{1} − β1〉,

L′ = 〈L ∈ L | aL < aL∪{1} − β1〉.
.

Suppose |L′| > |K′|. Then we have

N︷ ︸︸ ︷⋃

L∈L′
(L ∪ {1}) ∪

⋃
L′′ =

M︷ ︸︸ ︷⋃

K∈K′
(K ∪ {1}) ∪

⋃
K′′ ∪(|L′| − |K′| {1}).

Since β1 ≥ max(LB),

β1 ≥

∑
M∈M aM −

∑
N∈N bN

|L′| − |K′|

holds. In case |L′| < |K′|, a similar argument can be used, but with UB
instead of LB (A.2). Therefore, (A.4) holds, and by induction the second
system has a solution β2, . . . , β|I|. It is easy to see that β1, . . . , β|I| is a
solution for the original system.
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Lemma 31 Let S =
{
K⊆I

K:pK. If S satisfies R1, R2, and R3, then the

system

{
pK − pL ≤

∑

a∈K

Xa −
∑

a∈L

Xa ≤ pK , ∀L ⊆ K (A.5)

has a rational solution.

PROOF. According to Lemma 30, (A.5) has a solution iff for all bags M
and N over the subsets of K, such that

⋃
M =

⋃
N ,

∑

M∈M

pK − pK−M ≤
∑

N∈N

pN

holds. Let L = N
⋃
〈K −M | M ∈M〉.

Then, by R3 we have that
∑

L∈L pL ≥ kpK , with

k = mina∈K
∣∣∣〈N | a ∈ N ∧N ∈ N〉

⋃
〈M | M ∈M∧ a 6∈M〉

∣∣∣ .

Because |〈M | M ∈M∧ a ∈M〉| = |〈N | N ∈ N ∧ a ∈ n〉|, it follows that
k = |M|.
Therefore,

∑
L∈L pL ≥ |M| pK holds.

Since

∑

L∈L

pL =
∑

N∈N

pN +
∑

M∈M

pK−M ,

and |M| pK =
∑

M∈M pK ,∑
M∈M pK − pK−M ≤

∑
N∈N pN holds. 2

Completeness If S satisfies R1, R2, and R3, then

{
pK − pL ≤

∑

a∈K

Xa −
∑

a∈L

Xa ≤ pK , ∀L ⊆ K

has a rational solution (Lemma 31.) Therefore, S is complete (Lemma 29.) 2
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B Proof of Theorem 21 and 22

Lemma 32 Let a1, . . . an, b1, . . . , bn be strict positive reals. Then
a1+...+an

b1+...+bn
< p

implies that at least for one i, ai

bi
< p holds.

Lemma 33 Every k-cover M can be decomposed into a number of minimal
multi-covers M1, . . . ,Mn, such that

⋃
i=1...nMi =M.

Theorem 21 1 ⇒ 2 is trivial, since R3’ is more specific than R3. Suppose
that the system S =

{
K⊆I

K:pK satisfies R1 and R2, but does not satisfy

R3. We will show that it is impossible that it satisfies R3’.

There must be a set K ⊆ I, and a bag M over the subsets of K, such that

pK >
∑

m∈M
pM

k
with k = mina∈K(deg(a,M)). For each a ∈ K such that

deg(a,M) > k, we replace deg(a,M) − k of the sets A ∈ M that contain a
by A− {a}. In this way, we construct a k-coverM′ of K.
Because S satisfies R2,

∑
M∈M pM ≥

∑
M∈M′ pM . The k-cover M

′ can be
decomposed into different minimal multi-covers M1, . . . ,Mn of K, with Mi

a ki-cover of K (Lemma 33). Because
∑

m∈M′
pM

k
=

∑
M∈M1

pM+...+
∑

M∈Mn
pM

k1+...+kn
,

for at least one i,

∑
M∈Mi

ki
< pK must hold (Lemma 32.) Therefore, R3

′ is
violated. 2

Lemma 34 Let C be a positive integer, and let N be a bag over {−C,−C +
1, . . . ,−1, 0, 1, . . . , C−1, C} with

∑
n∈N n = 0. If |N | > 2C3, then there exists

M⊂ N (φ 6=M 6= N !), with
∑

m∈Mm = 0.

PROOF. If 0 ∈ N , the lemma clearly holds. Assume 0 6∈ N . N + = 〈n ∈
N | n > 0〉, N− = 〈n ∈ N | n < 0〉. At least one of N− and N+ contains
more than C3 elements. Assume that |N+| ≥ C3. Therefore, there is at least
one positive integer p that occurs C times. Because the sum of the elements in
N+ is at least C3, the sum of the elements in N− is at most −C3. Therefore,
there are at least C2 elements in N−, and thus there is a negative element n
such that deg(n,N−) ≥ C. (The same result obtains if |N−| ≥ C3.) It is also
clear that |n|p = −pn, and thus the bag 〈|n| · p, p · n〉 has sum 0, and is a
non-empty subbag of N . 2

Theorem 22 We will prove this theorem by induction on the size of K.
Base case |K| = 1. Trivial, since 〈K〉 is the only minimal multi-cover of K.
General case.We assume by induction the theorem holds for sets L with size
up to |K|−1. Thus, the degree and the cardinality of a minimal multi-cover of
a set L of cardinality smaller than |K| is bounded, since there is only a finite
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number of them. Let d, c be the respective bounds on the degree and the
cardinality of the minimal multi-covers of sets of cardinality at most |K| − 1.

Let K be a minimal k-cover of K, a ∈ K. It is clear that L = proj(K, K −
{a}) := 〈S − {a} | S ∈ K〉 is a (not necessarily minimal) multi-cover of
K − {a}. According to Lemma 33, we can split L = L1 ∪ . . . ∪ Ln with Li a
minimal li-cover of K − {a}. Therefore, we can split K = K1 ∪ . . . ∪ Kn with
Li = proj(Ki, K − {a}) a minimal li-cover of K − {a} (note however that
this decomposition of K is not necessarily unique). By induction, li ≤ d and
|Li| ≤ c. Consider now the bag M = 〈l1 − deg(a,K1), . . . , ln − deg(a,Kn)〉.
The sum of the bag is 0, since

∑n
i=1 li = k =

∑n
i=1 deg(a,Ki). Notice also

that −c ≤ li − deg(a,Ki) ≤ d ≤ c. Because K is minimal, for every sub-
bag not equal to M, the sum is not 0, otherwise the union of the Ki’s that
correspond to this subbag, would be a multi-cover of K, and thus K would
not be minimal. Therefore, via Lemma 34, the cardinality ofM is bounded by
2c3. Thus, |K| ≤ 2c4. Therefore, there are at most 22|K|c4 minimal multi-covers
of K and thus the number of minimal multi-covers is finite. 2

C Proof of Theorem 28
PROOF. 1⇔ 2 Soundness of the three rules is straightforward.
Completeness. Suppose the sparse system S =

{
K∈P

K:pK satisfies S1,

S2, and S3. Let S
′ =

{
K⊆I

K:p′K , with p′K = pK if K ∈ P , and p′K = 1

else. Suppose C(S ′) =
{
K⊆I

K:qK . We will show by contradiction that for

all K ∈ P , pK = qK holds. Suppose there is a K ∈ P such that pK 6= qK .
C(S ′) = B−Up(T−Down(S ′)) (Theorem 25.) Since S satisfies S1 and S2,
the rareness of K in C(S ′) comes from the bottom-up step, and thus there

exists a minimal k-cover K over the subsets of K, such that
∑

L∈K
qL

k
< pK .

The qL’s in this step can on their turn be obtained in the top-down step, or in
the bottom-up step. If qL was obtained in the top-down step, then it is easy
to see that qL = minL⊆Ki

pKi
; i.e. the minimum rareness of all supersets of L

that were given as input. In the other case, qL was obtained by a bottom-up
step. In that case, there exists a minimal l-cover L over the subsets of L,
such that qL =

∑
L′∈L qL′ . We now construct a kl-cover K

′ of K as follows:
K′ = (K−〈L〉)

⋃
L. K′ is a kl-cover. In this way we can get rid of all qL’s that

were obtained by application of a bottom-up step, because we can iteratively
replace each qL that was obtained by application of R3, by a sum of qL′ ’s,
where all L′ ⊂ L. When these L′ are obtained by R3, we can replace them by
qL′′ of even smaller sets L

′′. Since the singleton sets can only be obtained by
R2, this recursion must stop, and thus there exists an m-coverM such that∑

M∈M
qM

m
< pK , and all qM ’s are obtained by R2. As such, for all M , qM =

minM⊆Ki
pKi
, and thus

∑
M∈M

minM⊆Ki
pKi

m
< pK . There is still one problem:M

is not necessarily minimal. We can cope with this problem in exactly the same
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way as at the end of the proof of Theorem 21.

2⇔ 3 Suppose system S = {K1:p1, . . . , Kn:pn} satisfies S1, S2, but does not
satisfy S3. We will show that it also does not satisfy X . Hence, there exists a

bagM with minimal degree k and a setK such that pKi
>

∑
M∈M

minM⊆Kj
(pKj

)

k
.

For each M ∈ M, fix a KM ∈ {K1, . . . , Kn}, such that M ⊆ KM , and
pKM

= minM⊆Kj
(pKj

). Let K be the following bag: 〈KM ∩K | M ∈M〉. The
minimal degree of K is at least k (since M ⊆ KM ∩K for all M ∈ M), and

hence pKi
>

∑
K∈K

minM⊆Kj
(pKj

)

mdeg(K)
. This inequality is a violation of X .

The other direction is trivial, since S3 is equivalent to:

LetM be a bag over the subsets of K with minimal degree k. Then

pK ≤

∑
M∈MminM⊆Kj

(pKj
)

k
.

Since X is a specialization of this rule, X holds whenever S3 holds. 2
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