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Abstract supportof an itemsetX in D is the number of transactions

Mining frequent itemsets is one of the main problems in data m#ft the cover ofX in D: support(le, D) := |coper(X, D)|.
ing. Much effort went into developing efficient and scalable afn ltemsetis calledrequentin D if its support inD exceeds
gorithms for this problem. When the support threshold is set t§&¢ Minimal support threshold D ando are omitted when

low, however, or the data is highly correlated, the number of frif1ey are clear from the context. The goal is now to find all

quent itemsets can become too large, independently of the aﬁfqguﬁnltditemsets’ given a database and a minimal support
eshold.

rithm used. Therefore, itis often more interesting to mine aredu ) . L .
collection of interesting itemsets, i.e., a condensed representation. R€cent studies on frequent itemset mining algorithms

Recently, in this context, theon-derivablétemsets were proposedr€Sulted in significant performance improvements: a first
as an important class of itemsets. An itemset is called derivaBiestone was the introduction of the breadth-first Apriori
when its support is completely determined by the support of its s@gorithm [4]. In the case that a slightly compressed form
sets. As such, derivable itemsets represent redundant informafibrfhe database fits into main memory, even more effi-
and can be pruned from the collection of frequent itemsets. It wel§Nt: depth-first, algorithms such as Eclat [18, 23], and FP
shown both theoretically and experimentally that the collection 8fOWth [12] were developed.

non-derivable frequent itemsets is in general much smaller than the However, independently of the chosen algorithm, if the
complete set of frequent itemsets. A breadth-first, Apriori-basBynimal support threshold is set too low, or if the data is
algorithm, called NDI, to find all non-derivable itemsets was prélighly correlated, the number of frequent itemsets itsaff c
posed. In this paper we present a depth-first algorithm, dfNDI, ttR§ Prohibitively large. No matter how efficient an algorithm
is based on Eclat for mining the non-derivable itemsets. dfNDIi® if the number of frequent itemsets is too large, minirig al

evaluated on real-life datasets, and experiments show that dam@ththem becomes impossible.

outperforms NDI with an order of magnitude. To overcome this problem, recently several proposals
have been made to construct a condensed representation [15]

1 Introduction of the frequent itemsets, instead of mining all frequent

Since its introduction in 1993 by Agrawal et al. [3], thétemsets. A.condensed rep_resentapon IS a sub-cqllecﬂon 0
all frequent itemsets that still contains all informatiorhe

frequent itemset mining problem has received a great anai):st well-known example of a condensed representation are

of attention. Within the past decade, hundreds of researcht . o setg5, 7, 16, 17, 20]. The closurel() of an

papers have been p_ub_hshed presenting new algomhmsitgﬁwsetl is the largest superset Hisuch thatsupp(cl(1)) =
improvements on existing algorithms to solve this mini

. ngupp(f). A set] is closedif cI(I) = I. In the closed sets
problem more efficiently. ; :
: rea{:)resentatlon only the frequent closed sets are storad. Th
The problem can be stated as follows. We are given . : : . )
. . . . representation still contains all information of the frequ
set of itemsZ, and anitemset/ C 7 is some set of |tems.itemsets because for every gat holds that
A transactionoverZ is a couplel’ = (tid, I) wheretid is ' y
the transaction identifier anblis an itemset. A transaction supp(I) = max{supp(C) | I C C,cl(C) = C} .
T = (tid,I) is said tosupportan itemsetX C Z, if
X C I. A transaction databasé® over 7 is a set of

transactions ove?. We omitZ whenever it is clear from , X X ,
the context. Theoverof an itemsetX in D consists of the S€tS [10]. An itemset is callederivablewhen its support

set of transaction identifiers of transactiongithat support 'S completely determined by the support of its subsets. As
X: cover(X,D) = {tid | (tid,I) € D,X C I}. The such, derivable itemsets represent redundant informatidn
’ ’ T can be pruned from the collection of frequent itemsets. For
~ *Postdoctoral Fellow of the Fund for Scientific Research néias an |tem_set, it can be checked whether or not itis derivable by
(Belgium)(F.W.O. - Viaanderen). computing bounds on the support. In [10], a method based
TCurrent affiliation: University of Antwerp, Belgium. on the inclusion-exclusion principle is used.

Another important class of itemsets in the context
of condensed representations are tlun-derivableitem-



It was shown both theoretically and experimentally thdtintroduces the new algorithm dfNDI in depth, which is
the collection of non-derivable frequent itemsets is in-geexperimentally evaluated and compared to the level-wise
eral much more concise than the complete set of frequétdl in Section 5.
itemsets. It was proven that for a given databBseall sets
of length more tharog,(|D|) + 1 are derivable. Hence,2 Non-Derivable Itemsets

especially in databases with numerous items, but with feW this section we revisit the non-derivable itemsets intro
transactions, the number of non-derivable itemsets is-gUgficed in [10]. In [10], rules were given to derive bounds

anteed to be relatively small compared to the number of figy the support of an itemsétif the supports of all its strict
guent itemsets. Many biological datasets, e.g., gene 8Xpkghsets of are known.

sion datasets, are typical examples of such databases- In ex

periments in [10], it was shown empirically that the number;  peguction Rules Let ageneralized itemséie a con-

of non-derivable itemsets is in general orders of magn#udgnction of items and negations of items. For example,
smaller than the number of frequent itemsets. In most ¢ — {4 1, ¢ d} is a generalized itemset. A transaction
periments, the number of non-derivable itemsets was eyefy 1) contains a general itemsé = X UY if X C I
smaller than the number of closed sets. andl NY = (). Thesupport of a generalized items6tin a

In [10], a breadth-first, Apriori-based algorithm NDlyatabaseD is the number of transactions ®f that contain
to find all non-derivable itemsets was proposed. Due (9

the relatively small number of non-derivable itemsets, the \ye say that a general items6t= X UY is basedon

NDI-algorithm almost always outperforms mining all frejemsetr if 7 = X UY. From the well known inclusion-

quent itemsets, independently of the algorithm [8]. Whesclusion principle [11], we know that for a given general
we, however, look at the time and space required by the NRkmset = X UY based o,

algorithm as a function of its output-size, its performaigce
far below that of state-of-the-art frequent set mining algo supp(G) = Y (=) supp(J) .
rithms. The low efficiency of NDI comes mainly from the XCJCI
fact that it is a breadth-first generate-and-test algoritAth
candidates of a certain level need to be processed simultdigncesurp (1)
ously, and the support tests involve repeated scans over
complete database. ED > () + ()Y suzn(6)

In contrast, in the case of mining all frequent itemsets, xeJcl
depth-first algorithms have been shown to perfqrm MURtice that depending on the sign 6£1)! | supp(G), the
better and have far less costly candidate generation ph
and do npt require scannipg the compl_ete datapase over and Sx(I) = Z (71)\I\J\Supp(<])
over again. Furthermore, item reordering techniques can be
used to avoid the generation of too many candidates. i o

Unfortunately, depth-first algorithms essentially do nét & lower (Y[ even) or an upper(Y’| odd) approximation
perform the so called Apriori-test, that is, test whetheogl fOr the support off. In [10], this observation was used to
subsets of a generated candidate are known to be frequeffifPute lower and upper bounds on the support of an itemset
as most of them are simply not generated yet. Neverthele%s',ior each sef, let/; (us) denote the lower (upper) bound
the supports of the subsets of a given set is exactly what¥{g can derive using the deduction rules. That s,
needed in ord_er to determine Wheth_er an itemset is derivable I — max{dx(I)| X CI,I\ X odd} ,
or not. In this paper, we tackle this problem and present .

, X L ! min{dx(I) | X CI,I\ X even} .

a depth-first algorithm, dfNDI, for mining non-derivable
itemsets. The dfNDI-algorithm is based on Eclat and tiSnce we need the supports of all strict subsets @f com-
diffset technique as introduced by Zaki et al. [18, 19]. Asute the boundd; andu; clearly depend on the underlying
such, dfNDI combines the efficiency of depth-first itemsefatabase.
mining algorithms with the significantly lower number of _ _
non-derivable itemsets, resulting in an efficient algonifior EXAMPLE 1. Consider the following database:
mining non-derivable itemsets.

equals

XCcJjcI

The organization of the paper is as follows. In Section 2, TID | Ttems
the non-derivable itemsets and the level-wise NDI algarith L abecd
are revisited. In Section 3, we shortly describe the Eclat- D = 2 a,b, c
algorithm on which our dfNDI-algorithm is based. Special 3 |abde
attention is paid to item reordering techniques. Section g bcélee




Some deduction rules fabc are the following: Algorithm 1 Eclat
Input: D,o, I CT

supp(abc) = supp(ab) + supp(ac) — supp(a) = 1 Output: F[I](D,0)
supp(abc) < supp(ab) + supp(ac) + supp(bc) 1 F[I]:={}
—supp(a) — supp(b) — supp(c) 2: for all i € Z occurring inD do
+supp({}) = 2 FII) := FIIJU{IU{i}}
Il CreateD?
Hence, based on the supports of the subsetdafwe can D= ]}

deduce thasupp (abe) is in [1, 2]. for all j € Z occurring inD such thatj > i do

: C .= i) N j
In this paper, we will use Equation (2.1) to compute the,, if |C] f?:ﬁ&}) cover({7})

support of, based on the supports of its subsets, and th&i D =D U{(,O)}
support of the generalized itemggt ' ' ’

Py oo s w

10: end if
. ) _ 11:  end for
Exam PLbE 2. Eome equzllltl_es for |tebr115eaic. 12:  // Depth-first recursion
supp(abe) - fumo(? l))) +Supp(? C; + suppltc) 13:  ComputeF[I U {i}](D, o)
= (supp(a supp(ac) + supp(oc 14 F[I]:= FI)UF[I U {i}]
—supp(a) — SUPP(b);SUPP(C) 15: end for
+supp({})) — supp(abe) 0

Notice incidentally that the complexity of the term o )
5x (I) depends on the cardinality df = I \ X. The larger THEOREM2.1. [10](Monotonicity) Let/ C J be itemsets.
3 — / /
Y is, the more complex it will be to compute the support df supp(I) = dx(I), then, for all.X" such thatX € X' C
I based onX UY. For example, forbed, X U(J\ I)'_su?’p(‘]) = ox:(J)- ) )
Hence, ifl is a derivable, thery is derivable as well.
dapc(abed) = abe

Su(abed) — abe+ abd+ acd — ab— ac— ad + a Based on this theorem, a level-wise Apriori-like algorithm

was given in [10]. In fact, the NDI-algorithm corre-
sponds largely to constrained mining algorithms with non-
ggrivability as an anti-monotone constraint. In the caatid
eration phase of Apriori, additional to the monotogicit
ck, the lower and upper bounds on the candidate itemsets
re computed. Such a check is possible, since in Apriori a
set] can only be a candidate after all its strict subsets have

22 Condensed Representation Based on the deductionbeen counted. Th(_e .candldate itemsets that have an upper
bgund below the minimal support threshold are pruned, be-

rules, it is possible to generate a summary of the set 3 . :
frequent itemsets. Indeed, if — u;, then supp(I, D) = cause they cannot be frequent. The itemsets having lower

I, — u;, and hence, we do not need to starén the bound equal to the upper bound are pruned since they are
representation. Such a sét will be called aDerivable derivable. Beca_use Of. Theorem 24, we know that the su-
ltemset(DI), all other itemsets are calleNon-Derivable persets of a derivable itemset will be derivable as well, and
Itemsets(NbIs) Based on this principle, in [10] thehence, a derivable itemset can be pruned in the same way as
following condensed representation was int;oduced:, an infrequent itemset. Furthermore, from Theorem 2.1, we
can derive that if for a set, supp(I) = I1, or supp(I) = uy,

NDI(D, o) := {I | supp(I, D) > o,1; # ur}. then all strict supersets dfare derivable. These properties

’ T lead straightforwardly to the level-wise algorithm NDI giv

In the experiments presented in Section 5, it is shown tleat tA [10].

collection of non-derivable itemsets is much more concise

than the complete collection of frequent itemsets, anchofté  The Eclat Algorithm

even more concise than other concise representations. IRathis section we describe the Eclat-algorithm, since our

a discussion on the relation between NDI and the othdfiNDI-algorithm is based on it. Eclat was the first succdssfu

condensed representation we refer to [9]. algorithm proposed to generate all frequent itemsets in a
depth-first manner [18, 23]. Later, several other depth-firs

2.3 The NDI Algorithm In [10], in a slightly different algorithms have been proposed [1, 2, 13].

form, the following theorem was proven: Given a transaction databaseand a minimal support

In general, the number of terms iy (I) is 211\XI — 1.

Therefore, whenever in the algorithm we have the choi
between two generalized itemsets, we will always choose g}zé"
set with the least negations, as this set will result in a ma e
efficient calculation of the support éf a



thresholdo, denote the set of all frequent itemsets with — f 7
the same prefid C 7 by F[I](D,o). Eclat recursively T 1[1|1]3
generates for every iteme 7 the setF[{i}](D,o). (Note S I A A
that F[{}|(D, o) = U,z FI{i}](D, o) contains all frequent 6|5 |7]8]6
itemsets.) IS O R e I
For the sake of simplicity and presentation, we assume 10 9
that all items that occur in the transaction database are 10
frequent. In practice, all frequent items can be computed < b .
during an initial scan over the database, after which aj CD T3 cld ] e D° 2
infrequent items will be ignored. TTi[1]3 NN (@ 1 3
In order to load the database into main memory, Eclat | 2 | 2 | ¢ 9|5 |6 7 :
transforms this database into Wtsrtical format I.e., instead | 6 8 10 1% 9 10

of explicitly listing all transactions, each item is stored ’/\‘
together with its cover (also callddllist). In this way, the b W&d

Da ac D c
support of an itemseX can be easily computed by simplycTa e e (d)Db © 3
intersecting the covers of any two subskisZ C X, such |} |!|? S e e
thatY U Z = X. 10

The Eclat algorithm is given in Algorithm 1. pabe Dabd
Note that a candidate itemset is represented by each [ (o | [ (& |
set] U {i,j} of which the support is computed at line 7L [ | [ 3 |
of the algorithm. Since the algorithm doesn't fully exploit
the monotonicity property, but generates a candidate géms
based on only two of its subsets, the number of candidate
itemsets that are generated is much larger as compared t0 the join-step of Apriori: a set ... ax is generated if
a breadth-first approach such as apriori. As a comparison, pothq; .. .aj,_; anda; ... ay_sax are frequent. By re-
Eclat essentially generates candidate itemsets usinglogly  ordering, the generating sets tend to have lower support
join step from Apriori, since the itemsets necessary for the \yhich results in less candidates.
prune step are not available.

Figure 1: Eclat traversal.

(2) A second effect of the fact that the generating sets tend
EXAMPLE 3. Let the minimal support be2. We continue to have lower support is that their tid-lists are smaller.
working onD as given in Example 1. As illustrated in
Figure 1, Eclat starts with transforming the database ing i (3) At a certain depti, the covers of at most atl-itemsets
vertical format. Then, recursively, the conditional dedabs with the same: — 1-prefix are stored in main memory,
are formed. The arcs indicate the recursion. The tree is with & < d. Because of the item reordering, this
traversed depth-first, from left to right. For example, the number is kept small.

databaseD*? is formed usingD?, by intersection the tid- ) ) ) )
list of d with the tid-lists of all items that come aftéin D=, EXperimental evaluation in earlier work has shown that

The tid-lists with the item between brackets (e.g., thdistd- reordering the items results in significant performancagai
for d in D¢) indicate lists that are computed, but that are not ) . ,

in the conditional database because the item is infrequnt, =XAMPLE 4. In Figure 2, we illustrate the effect of item
any time, only the parents of the conditional database beifs?gorde””g on the dataset given in Example 1, with the same

constructed are kept in memory. For example, wiiéf is pPO” thresholdr = 2. As co.rr.]pared to Example 3, the
constructed, the databas@s andD are in memory; once a tree is more balanced, the conditional databases are smalle

conditional database is no longer needed, it is removed fr(?rﬂd there are 3 less candidates generated.

memory.
4 3.1 Diffsets Recently, Zaki proposed a new approach to

Atechnique that is regularly used, is to reorder the iterREiciently compute the support of an itemset using the
in support ascending order. In Eclat, such reordering can\gatical database layout [19]. Instead of storing the cover
performed at every recursion step between line 11 and line® 2 k-itemset/, the difference between the cover band
in the algorithm. the cover of thek — 1-prefix of I is stored, O!enoted by the

The effect of such a reordering is threefold: diffsetof I. To_ compute the support df we simply n_eed to

subtract the size of the diffset from the support ofkits 1-
(1) The number of candidate itemsets that is generategisfix. This support can be provided as a parameter within

reduced. The generation step of Eclat is comparablethe recursive function calls of the algorithm. The diffsét o
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Figure 3: dEclat traversal with reordered items.

Figure 2: Eclat traversal with reordered items.

an itemsetl U {4, j}, given the two diffsets of its subsets
Tu{i}andI U {j}, withi < j, is computed as follows:

diffset(I U {i, §}) == diffset(I U {j}) \ diffset(I U {i}).

This technique has experimentally shown to result in signifz'

icant performance improvements of the algorithm, now des-

ignated aglEclat[19]. The original database is still stored
in the original vertical database layout.
Notice incidentally that with item reordering,

supp(I U {i}) < supp(I U {j}) .

Hence, diffset(I U {i}) is larger thandiffset(I U {j}).
Thus, to form diffset(I U {i,j}), the largest diffset is

subtracted from the smallest, resulting in smaller difset 3:
This argument, together with the three effects of reordgerin

pointed out before, makes that reordering is a very effectiv

optimization.

ExampPLE 5. In Figure 3, we illustrate the dEclat algorithm

with item reordering on the dataset given in Example 1, with

the same support threshadd= 2. The diffset of for example
dab (entry b in the conditional databas®%), is formed by
subtracting the diffset afa from the diffset fordb. Notice

that the items are ordered ascending w.r.t. their support, . .
g bp 4. The deduction rules allow to extend the diffsets to

and not w.r.t. the size of their diffset. The support dfb
is computed as the support @& (3) minus the size of its
diffset (), which gives a support &

4 ThedfNDI Algorithm
In this section we describe a depth-first algorithm for minin

all frequent non-derivable itemsets. The dfNDI algorithm
combines ideas behind the Eclat algorithm, the diffsets and

the deduction of supports into one hybrid algorithm.

. Just like Eclat, tidlists (and diffsets) will be used to

compute the support of itemsets. Recursively, condi-
tional databases will be formed. Hence, computing the
support of an itemset will, unlike in the breadth-first

version,notrequire a scan over the complete database.

There is one problem, however: to compudte(7),

the supports of all setd such thatX C J C I
must be known. Since Eclat is a depth-first algorithm,
many of these supports are not available. This problem,
however, can be solved by changing the order in which
the search space is traversed. By changing the order,
we can keep a depth-first approach, and still have the
property that all subsets of a seare handled beforé
itself.

Because we need the support of already found sets to
compute bounds of their supersets, we will maintain the
found frequent non-derivable itemsets in a specialized
structure that allows fast lookup. Since the number
of non-derivable itemsets is in general much lower
than the number of frequent itemsets, the memory
requirements for the specialized storage is not too bad;
also, it is comparable to the amount of memory used in
the ChARM algorithm to store all found frequent closed
itemsets [22].

tidlists of arbitrary generalized itemsets. That is, if
we want to determine the support of a detwe can

use the cover of any of the generalized itemsets based
on I. Then, based on the support of the generalized
itemsetX U Y, and ondx (1), the support off itself

can be computed. This flexibility allows us to choose a
generalized itemset that has minimal cover size.

In the rest of the section we concentrate on these four

The construction of the dfNDI-algorithm is based on thgoints. Then, we combine them and give the pseudo-code of

following principles:

dfNDI, which is illustrated with an example.



4.1 Order of Search Space Traversal We show next how

we can guarantee in the Eclat-algorithm that for all sets

I the support of its subsets is computed beférigself is (/b\d

handled. In Eclat, the conditional databases are compnted i P2 D\«

the following order (see Example 3): am - - -,
D 13 D11 D" 10 D 7 D" 6 D" 4

D —D* Dab N Dabc N Dabcd

- Dabd Dabc 15 Dabd 14 Dacd 12 Dbcd 8
_, pac Dacd
. 'D(ld Da,bcd 16
N Db N Dbc N Dbcd
_, pbd Figure 4: Recursive structure between the conditional-data
. Dpe s ped bases

— pd

the same, but all branches that come after the brandh of
Since the support of a set; ...a, is computed as thegre now handletheforethe branch off. As such, in reverse
cardinality of the tidlist ofa,, in the conditional databaseﬁre-order, all subsets dfare handled beforéitself.
Der--en-1, the supports of the itemsets are compute in the Besjdes enabling a depth-first algorithm for mining non-
following order: derivable itemsets, the reverse pre-order has other applic
tions as well: a similar technique can be used when min-
ing downwards closed collections of itemsets in a depth-firs
{abed, abee}, {abede}, {abde}, {acd, ace}, manner while preserving full pruning capabilities. It must
{acde}, {ade}, {be, bd, bey, {bed, bee}, {bede}, be noted however that this ability comes the cost to store all
{bde}, {cd, ce}, {cde}, {de} found itemsets in the collection. Hence, the usefulnedsiof t
. technique can be compromised when the downward closed
Hence, for example, when the supportabtd is computed, collection becomes too large. For such large collections it

the supports obc, bd, cd, acd, andbed are not counted yet. is probably better to sacrifice part of the pruning in order

Therefore, when the search space is explored in this oose the store of generated itemsets. For small collec-

all rules forabed that use one of these five sets cannot k%e :
computed. I6ns though, the reverse pre-order is very useful. Many con

. . . densed representations, such as the non-derivable imset
An important observation now is that for every det . .
. ) are typical examples of relatively small downward closed
all subsets either occum the recursion patho 7, or after

I. For example, the support abcd is computed inD*be, collections of itemsets.

The supprsof e subsets. are eter computed on,, NVOCE 450 12 e revrse reovir e o epercs
the recursive patha, b, ¢, d in D, ab, ac, ad in D%, abe, abd n y 9¢;

in D%, or afterabed: acd in D, which is constructed computed, and the same covers are in memory simultane-

after the recursion beloW?®, be, bd in DP, which comes a%?/%vgrnb:mct)\?ves\/rgearrg V:’J:f;mtgeeé, Sgt gﬁgse;?;egﬂdgfrirs.
after the recursion belowb® has ended, andd in D¢, ! 9

which comes after the recursion bel@® has ended. We handled beford "S?'f- . .
: . I Another very important remark is that this guarantee
can view the recursive structure between the conditional . . . .
. . . : remains even when at every step in the recursion the items
databases in Eclat as a tree, in which the children are atderé o L
. . . I o in"the conditional databases are reordered according ito the
lexicographically, as is illustrated in Figure 4. This tieby suobort. Hence. we can still apply the important item
Eclat traversed depth-first, and from left-to-right; thatin regr%eri'n techni’ues PRy P
pre-order. Let the node associated with an itenise¢ the 9 ques.
node of the conditional database in which the suppoftief ExAMPLE 6. Consider the tree in Example 4 that was con-
computed. The observation can now be restated as follogsucted with item reordering. The numbers in the nodes in-
the nodes of the subsets bére either on the path frof to dicate the reverse pre-order.
the node ofl, or are in a branch that comes affemeverin The reason that the same relation between a set and
a branch that comdseforethe branch of . its subsets still applies can be seen as follows: the itemset
Hence, we can change the order as follows: the saniele is counted in the conditional database?® as the
tree is traversed, still depth-first, but, from right to leWe cardinality of the tidlist ofe. Hence, the order in which the
will call this order thereverse pre-orderThe numbers in the items ofabde were selected isdabe. That is: (a) in the
nodes of the tree in Figure 4 indicate the reverse pre-ordiatabaseD, d came beforer, b ande; (b) in D?, a came
In this way, the path fronD to the node of a set remains beforeb ande; and (c) in D%, b came before.. Since the

{a,b,c,d, e}, {ab,ac,ad, ae}, {abe, abd, abe},



Input: D, o

D1 Output: D!
/\ 1: for all k occurring inD afterl do
D°9 D5 D3 D2 2. Il kis eitherj orj

C[k] := cover({l}) N cover({k})

3
Dl D10 DT D6 D4 4. Clk] :== cover({i}) \ cover({k})

5. if {i,j} is o-frequentthen
Dt g 6 it |C[4]] < |C[j]] then
7 Dt DB UG O}
8: else 4 4 -
, ) " o: DU =D U {(j,C[H))}
items in a conditional database are processed backwardsig end if

the recursion, therefore, (a), b, d, e are in D, andab, ae, 11. endif

be, abe are handled befor®? is constructed, (byd, bd and 1. end for

de are in D¢, and bde handled beforeD? is constructed,

and (C)ade andabd are in D% Figure 5: Recursive construction & in dfNDI
In general, letl be an itemset and the elementd afre

choseninthe order .. .1,. Let.J be a strict subset of. If J ) )
corresponds to a prefix of . . . i,,, then.J is computed on the all, the diffsets are extended to covers of arbitrary gen-

recursive path t"-i=—1 . Otherwise, lei; be the first item eralized ite'mfsets. That is, no.ti_only.covers of' the type
of iy .. .4, thatis notinJ. Then, in the conditional databasefover (I U {2, j}) and cover(I U {i, j}) will be considered,
Dir-ii-1 allitems inJ \ {iy, ..., i;_1} come strictly after but aIso::over(X U Y') for any generahz_ed |temsét_' uyY
i;, and hence, the node fdris on the right of the node fof P@sed on/ U {i, j}. Secondly, the choice for which type
and is thus visited beforgin the reverse pre-order. of cover is not static in dfNDI. In contrast, in Eclag/vays
cover(I U {i,j}), and in dEclatalwayscover(I U {i,j})is

42 Storing the Found NDIs The frequent non—derivable“sed_- In dfNDI, this choice will be postponed to run—ti.me. At.
itemsets are stored together with their supports in a strect™Un-time both covers are computed, and the one with mini-
that allows for fast look-up of the supports. The itemsefaal size is chosen. In this way it is g‘uaranteed tha_t the size
are stored in such a way that fast lookup of the supportLfdhe covers atleasialvesirom D to D*. The calculation of
possible. In our implementations, an itemset trie was usf covers can be done with minimal overhead in the same
for this purpose. |ter§1t|on. When |ter§1t|ng over the cover 6f}, .the set of

In the extreme case that the number of non-derivalii tid’s that are not incover({i}) N cover({;}) is exactly
itemsets becomes too large to be maintained in main meitieer ({i}) \ cover({;}). o )
ory, a condensed representation [15] can be used as well. For -6t D be a database that contains tidlists of both items
example, only the closed itemsets [16] could be stored. Bd Of negations of items. Létbe the list associated with
nally, remark that it is not uncommon that an algorithm neelf€m ¢ That is,  is eitheri or i. The procedure used in
to maintain itemsets in main memory. Most closed item<8fND! to construct the conditional databag¥é from D is

mining algorithms need to store the found frequent clos8yen in Figure 5. The procedure is applied recursively.
sets in main memory (e.g. Charm [21]). Suppose that we have recursively constructed datab&se

with G = X UY a generalized itemset. For every item
43 Generalizing the Diffsets In Eclat and dEclat, the (resp. negated item) in D, the cardinality of the tidlistis in
conditional databas®’U1?} is generated from the databasf&ct the support of the generalized item&@t {i} UY" (resp.
DI if this database contains itemAll items j > i thatarein X U Y U {i}) The support test in line 5 is then performed
DI will be in the conditional database’“{%}. In Eclat, the UYSINg the deduction rules asiexplamed in Section 2. For
tidlist of j in D'V{1} is computed by intersecting the tidlist&X@mple, suppose= i andk = j. LetJ = X UY U {i, j}.
of i andj in D’. In dEclat, not the tidlists are maintained N€ Valu&xuyiy (J) is computed (using the stored supports)
in the conditional databases, but the diffsets. The diftgetand from this value and the size of the coveofi{s, j}UY’,
j in DIV} is computed by subtracting the diffset ofn the support of/ can be found:
D! from the diffset ofj in DI. Hence, with the general- _ Y N e
ized itemsets notation? in Eclat the conditional dgtabase f supp(J) = Oxuay (J) + (_1)‘ lsuPp(X Ui jpuy)

DY contains for all itemsg > 4, (j, cover(I U {i,j})). Notice also that if C[j] (resp. C[j]) is empty,
dEclat maintains for all itemg > i, (j, cover(I U{i,j})) supp(GU{i,j}) = 0 (resp. supp(G U {i,j}) = 0). From
in the conditional databag@’“1%}. Theorem 2.1, we can derive that in that situation, every su-

In dfNDI, we will use a similar procedure. First ofperset ofX UY U {4, j}) is a derivable itemset.



EXAMPLE 7. Consider the following databask, and the
conditional database®® and D*’:

D
alblc|d Da B
171121 7T el d Dab
2121412 — — |c|d

51215

313153 slsls 5
5(71619
8 7

Algorithm 2 dfNDI

Input: D,0,G=XUY

D containsb becausecover(a) \ cover(b) is smaller than Output: dfNDI(D, o, G)
cover(a) N cover(b). D containsd since cover(h) \ 1 dfNDI:={}

cover(d) is smaller thancover (b) N cover(d) in D°. 2: for all I that occur irD, ordered descendirdp

The support ofibc is counted via the cover efin peb, 3

Since this cover contains one elementyp(abc) = 1, and 4
hence, S
6:
7

supp(abc) = supp(ac) — supp(abc) =2 — 1 = 1. :
8:

The support ofib is found in the trie that maintains the found g.

frequent non-derivable itemsets. Notice that the covet ofg.

in D is empty. Thereforesupp(abd) = 0, and thus, every 11:

superset ofibd is derivable. 12:

13:

4.4 The Full dfNDI Algorithm The combination of 14:

the techniques discussed in this section give the dfNDis:

algorithm described in Algorithm 2. In the recursion, thes:

generalized itemse& that corresponds to the items on7:

negated items that were chosen up to that point, must i
passed on. Hence, the set of all frequent NDIs is given by

dINDI(D, o, {}). We assume tha® is given in vertical for- 19:

mat, and that all items i are frequent.

As already mentioned before, reordering the items mo:
the different conditional databases does not fundamegntadh:
change the algorithm. With reordering, we are still guap2:
anteed that all subsets of an itemgedre handled beforé 23:
itself. Therefore, in the experiments, we will use item rez4:
ordering techniques to speed up the computation. There ase
different interesting orderings possible: 26:

1. Ascending w.r.t. support: the advantages of this ord 27—:
ing are that the number of generated candidates is 35
duced, and that the tree is more balanced. Since for
every candidate, lower and upper bounds on the s
port are computed, generating less candidates can-be

/1l =1iorl =1, for an item;
dfNDI := dfNDIU {(X UY U {i})}
Il CreateD!
D= {}
for all k£ occurring inD afterl do
Il k = jork = j, for an itemj
lletJ = X UY U {i,j}
Compute bound§, u] on support ofJ;
if | #wandu > o then
/I J inan NDI
StoreJ in the separate trie
// Compute the support of
Clk] := cover({l}) N cover({k})
C[k] := cover({I}) \ cover({k})
I1|Cj]| s supp(X UY U {1, 5})
Computesupp(J) based on the support of its
subsets and ofC'[j]|
if supp(J) > o and supp(J) # [ and
supp(J) # u then
if |C[j]] < |C[J]| then
D'= D' U{(j,Cli])}
else
D= D' U {(7. C)}
end if
end if
end if
end for
/I Depth-first recursion
ComputedfNDI(D!, o, G U {I})
dfNDI := dfNDI U dfNDI(D!, 5, G U {i})

- end for

very interesting.

2. Ascending w.r.t. size of the cover: with this ordering,
the size of the covers will in general be smaller, since
the covers of the first items in the order are used more
often than the covers of the items later in the ordering.

Depending on the application, either the first or the last
ordering will be better. Which one is the best probably



depends on the selectivity of non-derivability versus tleemputed. From the size of these covers, the suppait of
selectivity of frequency. If most sets are pruned due to nas-computed: supp(ab) = 4. Because the support differs
derivability, the second ordering will be more interestinfjom the lower and the upper boun@will be in D°. Since
than the first. If frequency is the main pruner, the first ordesver({a}) \ cover({b}) was the smallest of the two covers,
is more interesting. (b, cover({a}) \ cover({b})) is added. Then the itemis
There are many different variants possible of the dfNDiandled. The bounds fae are: [,. = 4, uqe = 6. Thus,ae

algorithm. Depending on the situation, one variant may ®enon-derivable. The two covers fae are computed and
better than the other. the support is derivedsupp(ae) = 4. Becausesupp(ae) =
item e will not be added tdD?*, because all supersets
e must be derivable. This procedure continuous until all
items are handled. In the construction Bf, it turns out
2. Since computing the bounds can be very costly, Weatade is derivable, sincéy(ade) = 2, anddy(ade) = 2,

want to avoid this work as much as possible. Henc)d hencé.qe = uqae = 2.

in situations where frequency is highly selective, it is

better to switch the support test and the non- der|vab|I|ty4//N,

test. That is, lines 10 and 11 in Algorithm 2 are?’

1. Ordering the items in the conditional databases, é&a
described above.

moved to after the if-test on line 19. Evidently, the test2 E ©) g e e @) z Z ©)
supp(J) # 1, uis removed from the if-test on line 19 tg 2 8| 2 10 97| 2
after the calculation of the bounds. Hence, only bounds / T~
are computed on itemsets that are frequent. o D
HORNGH -
)

3. Another possibility to reduce the amount of work Oty ¢ojiection of frequent non-derivable |temsets in this

the calculation of the bounds is not to compute all
bounds, but only a limited number. A similar approach
already turned out to be quite useful in the context of the{@, a,b, ¢, d, e, ab, ac, ad, ae, be, bd, be, ce, de, abe, abd}
breadth-first NDI-algorithm [10]. There, the depth of a

rule based o UY was defined af’|. The lower the 5 Experiments

depth of a rule, the less complex. Instead of computi
all rules, only rules up to a limited depth can be used.
practice it turned out that most of the time using rulqﬁe
up to depth3 does not affect the precision of the rule
Put elsewhere, most work is done by the rules of limit

ample is:

e experiments were performed on a 1.5GHz Pentium IV
with 1GB of main memory. To empirically evaluate
proposed dfNDl-algorithm, we performed several tests
the datasets summarized in the following table. For
E‘éi-lch dataset, the table shows the number of transactiens, th

depth. number of items, and the average transaction length.
ExampLE 8. We illustrate the di_D_I algorithm on tr_\e data- Dataset #trans. #items Avg. length
base of Example 3. Every conditional database is ordered BMS-POS 515597 1656 653
ascending w.r.t. the size of the cover. The tid-lists with th Chess 3196 76 37
item between brackets indicate lists that are computed, but Pumsb 49046 2112 74
that are not in the conditional database, because the itemse  \, chroom 8124 120 23
I associated with the item is either (a) infrequent (eidgn
D*)), or (b) supp(I) = I; or supp(I) = us. In case (b),[ These datasets are all well-known benchmarks for fre-
is a frequent NDI, but all supersets dfare derivable. The quent itemset mining. ThBMS-POSlataset contains click-
items in case (b) are indicated in bold. stream data from a small dot-com company that no longer

We start with the databasP. Because of the reverseexists. These two datasets were donated to the research com-
pre-order that is used, first the databa®® is constructed. munity by Blue Martini Software. Thé&umshkdataset is
Only iteme comes afteb in D. The lower and upper boundshased on census data, thieishroomdataset contains char-
onbe are computedl,, = supp(b)+supp(e)—supp(d) = 5, acteristics from different species of mushrooms. Thess
upe = supp(b) = 7. Hence,be is not derivable. Both dataset contains different game configurations. The Pumsb
cover(b)Ncover(e) andcover(b)\ cover(e) are constructed. dataset is available in the UCI KDD Repository [14], and
|cover(b) N cover(e)| = 5, and hencesupp(be) = 5. Since the Mushroom and Chess datasets can be found in the UCI
supp(be) = lpe, all supersets obe must be derivable. Machine Learning Repository [6].

NextD? is constructed. Foub the following lower and Obviously, as the number of non-derivable frequent
upper bound is computed;;, = 3, uq, = 6. The two covers itemsets is significantly smaller than the total number of
cover({a}) N cover({b}) and cover({a}) \ cover({b}) are frequent itemsets, it would be unfair to compare the per-



formance of the proposed algorithm with any other normedllection has already been shown to be superior to all other

frequent itemset mining algorithm. Indeed, as soon as Hepresentations in almost all cases. Third, we generalized

threshold is small enough or the data is highly correlatétle diffsets technique and store the cover of an itemset

it is well known that traditional techniques fail, simply @u containing several negated items. These covers are tlpical

to the massive amount of frequent sets that is producetych smaller than the usual covers of regular itemsets,

rather than any inherent algorithmic characteristic ofahe and hence, allow faster set intersection and set difference

gorithms. Therefore, we merely compare the performanceoperations. The resulting algorithm, dfNDI, thus inherits

dfNDI with NDI. Also note that a thorough comparison oéll positive characteristics from several different teges

the sizes of different condensed representations hadglreglowing fast discovery of a reasonable amount of frequent

been presented in [10] and will not be repeated here. itemsets that are not derivable from their subsets. These
In our experiments, we compared the NDI algorithrtlaims are supported by several experiments on real life

with three different versions of the dfNDI algorithm. Thelatasets.

first version, ‘dfNDI’, is the regular one as described in

this paper. The second version, ‘dfNDI - negations’, dog&serences

not allow to use the covers of generalized itemsets, and

hence, stores the full cover of every candidate itemset and

always computes the covers by intersecting the covers Bl R. Agarwal, C. Aggarwal, and V. Prasad. Depth first genera-

two subsets. The third version, ‘dfndi + support order’ is th ~ tion of long patterns. In R. Ramakrishnan, S. Stolfo, R. Ba-

dfNDI algorithm in which items are dynamically reordered é?gr?bg . rirelcrirllz-at’iajr::?c%dr::‘:zgcc::idr:nl?r?oc\)/]\(/ltgggil)grs?g/'\élry

in every recursion step accoring to their support, while .

the regular dfNDI algorithm orders the items accordin%?] and Data Mining pages 108-118. ACM Press, 2000.

h £ th lized i . A R. Agarwal, C. Aggarwal, and V. Prasad. A tree projection
to the cover of the generalized itemset it represents. algorithm for generation of frequent itemsetslournal of

experiments were performed for varying minimum support  parajiel and Distributed Computings1(3):350-371, March
thresholds. The result can be seen in Figures 6 and 7. 2001.

First, we compared the time performance of these fouys] R. Agrawal, T. Imielinski, and A. Swami. Mining association
algorithms. As expected, dfNDI performs much better rules between sets of items in large databases. In P. Buneman
compared to NDI. Using the smallest cover of a generalized and S. Jajodia, editor®roceedings of the 1993 ACM SIG-
itemset based on the current itemset also has a significant MOD International Conference on Management of Dartal-
effect, which is especially visible in the pumsb dataseisTh ~ ume 22(2) ofSIGMOD Recordpages 207-216. ACM Press,
is of course mainly due to the faster set intersection and set 1993. ) _ .
difference operations on the smaller covers. Ordering tHd! R- Agrawal and R. Srikant. _Fast algorithms for mining
. . . association rules. IRroc. VLDB Int. Conf. Very Large Data
items according to the size of the covers also proves to be

. . Basespages 487-499, Santiago, Chile, 1994.
better as compared to ordering according to the support fg] Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal.

the items, although the dif_ference is never very big. Mining frequent patterns with counting inferenc8IGKDD
In the second experiment, we compare the memory Explorations 2(2):66—75, 2000.
usage of the four algorithms. As can be seen, the NOb] C. Blake and C. Merz. The UCI

algorithm needs least amount of memory. Of course, this Repository of machine learning databases
is expected as the dfNDI also stores parts of the database in [http://www.ics.uci.edutmlearn/MLRepository.html]

main memory. Fortunately, the optimization of storing only  Irvine, CA: University of California, Department of Informa-
the smallest cover of each generalized itemset indeed shows tion and Computer Science, 1998.

to result in reduced memory usage. Again, the ordering] J.-F. Boulicaut and A. Bykowski. Frequent closures as a con-

based on the cover seems to result in a litle bit better CIS€ 'ePresentation for binary data mining. Rrec. PakDD
memory usage Pacific-Asia Conf. on Knowledge Discovery and Data Min-

ing, pages 62-73, 2000.
. [8] T. Calders. Deducing bounds on the support of itemsets. In
6 Conclusion Database Technologies for Data Mininchapter ?, pages ?—?
In this paper, we presented a new itemset search space Springer, 2003.
traversal strategy, which allows depth-first itemset ngnin [9] T. Calders and B. Goethals. Minimakree representations
algorithms to exploit the frequency knowledge of all supset ~ ©f frequent sets. IRroc. PKDD Int. Conf. Principles of Data
of a given candidate itemset. Second, we presented a Mining and Knowledge Discoverpages 71-82, 2002.
depth-first non-derivable itemset mining algorithm, WhiCH.O] T. Calders and B. Goethals. Mining all non-derivable frequent

uses that traversal as it needs for every generated caadidat temsets. IrProc, PKDD Int. Conf. Principles of Data Mining
Y9 and Knowledge Discoverpages 74-85. Springer, 2002.

itemset, all _Of its subsets. From the viewpoint c_)f cond_ensqu] J. Galambos and I. SimonelliBonferroni-type Inequalities
representations of frequent sets, the non-derivable &ems ~ \ith applications Springer, 1996.
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Figure 6: Performance comparison.
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