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Abstract

Mining frequent itemsets is one of the main problems in data min-
ing. Much effort went into developing efficient and scalable al-
gorithms for this problem. When the support threshold is set too
low, however, or the data is highly correlated, the number of fre-
quent itemsets can become too large, independently of the algo-
rithm used. Therefore, it is often more interesting to mine a reduced
collection of interesting itemsets, i.e., a condensed representation.
Recently, in this context, thenon-derivableitemsets were proposed
as an important class of itemsets. An itemset is called derivable
when its support is completely determined by the support of its sub-
sets. As such, derivable itemsets represent redundant information
and can be pruned from the collection of frequent itemsets. It was
shown both theoretically and experimentally that the collection of
non-derivable frequent itemsets is in general much smaller than the
complete set of frequent itemsets. A breadth-first, Apriori-based
algorithm, called NDI, to find all non-derivable itemsets was pro-
posed. In this paper we present a depth-first algorithm, dfNDI, that
is based on Eclat for mining the non-derivable itemsets. dfNDI is
evaluated on real-life datasets, and experiments show that dfNDI
outperforms NDI with an order of magnitude.

1 Introduction

Since its introduction in 1993 by Agrawal et al. [3], the
frequent itemset mining problem has received a great deal
of attention. Within the past decade, hundreds of research
papers have been published presenting new algorithms or
improvements on existing algorithms to solve this mining
problem more efficiently.

The problem can be stated as follows. We are given a
set of itemsI, and anitemsetI ⊆ I is some set of items.
A transactionoverI is a coupleT = (tid , I) wheretid is
the transaction identifier andI is an itemset. A transaction
T = (tid , I) is said tosupport an itemsetX ⊆ I, if
X ⊆ I. A transaction databaseD over I is a set of
transactions overI. We omit I whenever it is clear from
the context. Thecoverof an itemsetX in D consists of the
set of transaction identifiers of transactions inD that support
X: cover(X,D) := {tid | (tid , I) ∈ D,X ⊆ I}. The
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supportof an itemsetX in D is the number of transactions
in the cover ofX in D: support(X,D) := |cover(X,D)|.
An itemset is calledfrequentin D if its support inD exceeds
the minimal support thresholdσ. D andσ are omitted when
they are clear from the context. The goal is now to find all
frequent itemsets, given a database and a minimal support
threshold.

Recent studies on frequent itemset mining algorithms
resulted in significant performance improvements: a first
milestone was the introduction of the breadth-first Apriori-
algorithm [4]. In the case that a slightly compressed form
of the database fits into main memory, even more effi-
cient, depth-first, algorithms such as Eclat [18, 23], and FP-
growth [12] were developed.

However, independently of the chosen algorithm, if the
minimal support threshold is set too low, or if the data is
highly correlated, the number of frequent itemsets itself can
be prohibitively large. No matter how efficient an algorithm
is, if the number of frequent itemsets is too large, mining all
of them becomes impossible.

To overcome this problem, recently several proposals
have been made to construct a condensed representation [15]
of the frequent itemsets, instead of mining all frequent
itemsets. A condensed representation is a sub-collection of
all frequent itemsets that still contains all information.The
most well-known example of a condensed representation are
the closed sets[5, 7, 16, 17, 20]. The closurecl(I) of an
itemsetI is the largest superset ofI such thatsupp(cl(I)) =
supp(I). A setI is closedif cl(I) = I. In the closed sets
representation only the frequent closed sets are stored. This
representation still contains all information of the frequent
itemsets, because for every setI it holds that

supp(I) = max{supp(C) | I ⊆ C, cl(C) = C} .

Another important class of itemsets in the context
of condensed representations are thenon-derivableitem-
sets [10]. An itemset is calledderivablewhen its support
is completely determined by the support of its subsets. As
such, derivable itemsets represent redundant informationand
can be pruned from the collection of frequent itemsets. For
an itemset, it can be checked whether or not it is derivable by
computing bounds on the support. In [10], a method based
on the inclusion-exclusion principle is used.



It was shown both theoretically and experimentally that
the collection of non-derivable frequent itemsets is in gen-
eral much more concise than the complete set of frequent
itemsets. It was proven that for a given databaseD, all sets
of length more thanlog2(|D|) + 1 are derivable. Hence,
especially in databases with numerous items, but with few
transactions, the number of non-derivable itemsets is guar-
anteed to be relatively small compared to the number of fre-
quent itemsets. Many biological datasets, e.g., gene expres-
sion datasets, are typical examples of such databases. In ex-
periments in [10], it was shown empirically that the number
of non-derivable itemsets is in general orders of magnitudes
smaller than the number of frequent itemsets. In most ex-
periments, the number of non-derivable itemsets was even
smaller than the number of closed sets.

In [10], a breadth-first, Apriori-based algorithm NDI
to find all non-derivable itemsets was proposed. Due to
the relatively small number of non-derivable itemsets, the
NDI-algorithm almost always outperforms mining all fre-
quent itemsets, independently of the algorithm [8]. When
we, however, look at the time and space required by the NDI-
algorithm as a function of its output-size, its performanceis
far below that of state-of-the-art frequent set mining algo-
rithms. The low efficiency of NDI comes mainly from the
fact that it is a breadth-first generate-and-test algorithm. All
candidates of a certain level need to be processed simultane-
ously, and the support tests involve repeated scans over the
complete database.

In contrast, in the case of mining all frequent itemsets,
depth-first algorithms have been shown to perform much
better and have far less costly candidate generation phases,
and do not require scanning the complete database over and
over again. Furthermore, item reordering techniques can be
used to avoid the generation of too many candidates.

Unfortunately, depth-first algorithms essentially do not
perform the so called Apriori-test, that is, test whether all of
subsets of a generated candidate are known to be frequent,
as most of them are simply not generated yet. Nevertheless,
the supports of the subsets of a given set is exactly what is
needed in order to determine whether an itemset is derivable
or not. In this paper, we tackle this problem and present
a depth-first algorithm, dfNDI, for mining non-derivable
itemsets. The dfNDI-algorithm is based on Eclat and the
diffset technique as introduced by Zaki et al. [18, 19]. As
such, dfNDI combines the efficiency of depth-first itemset
mining algorithms with the significantly lower number of
non-derivable itemsets, resulting in an efficient algorithm for
mining non-derivable itemsets.

The organization of the paper is as follows. In Section 2,
the non-derivable itemsets and the level-wise NDI algorithm
are revisited. In Section 3, we shortly describe the Eclat-
algorithm on which our dfNDI-algorithm is based. Special
attention is paid to item reordering techniques. Section

4 introduces the new algorithm dfNDI in depth, which is
experimentally evaluated and compared to the level-wise
NDI in Section 5.

2 Non-Derivable Itemsets

In this section we revisit the non-derivable itemsets intro-
duced in [10]. In [10], rules were given to derive bounds
on the support of an itemsetI if the supports of all its strict
subsets ofI are known.

2.1 Deduction Rules Let ageneralized itemsetbe a con-
junction of items and negations of items. For example,
G = {a, b, c, d} is a generalized itemset. A transaction
(tid, I) contains a general itemsetG = X ∪ Y if X ⊆ I

andI ∩ Y = ∅. Thesupport of a generalized itemsetG in a
databaseD is the number of transactions ofD that contain
G.

We say that a general itemsetG = X ∪ Y is basedon
itemsetI if I = X ∪ Y . From the well known inclusion-
exclusion principle [11], we know that for a given general
itemsetG = X ∪ Y based onI,

supp(G) =
∑

X⊆J⊆I

(−1)|J\X|supp(J) .

Hence,supp(I) equals
∑

X⊆J⊂I

(−1)|I\J|+1supp(J) + (−1)|Y |supp(G)(2.1)

Notice that depending on the sign of(−1)|Y |supp(G), the
term

δX(I) :=
∑

X⊆J⊂I

(−1)|I\J|supp(J)

is a lower (|Y | even) or an upper (|Y | odd) approximation
for the support ofI. In [10], this observation was used to
compute lower and upper bounds on the support of an itemset
I. For each setI, let lI (uI ) denote the lower (upper) bound
we can derive using the deduction rules. That is,

lI = max{δX(I) | X ⊆ I, I \ X odd} ,

uI = min{δX(I) | X ⊆ I, I \ X even} .

Since we need the supports of all strict subsets ofI to com-
pute the bounds,lI anduI clearly depend on the underlying
database.

EXAMPLE 1. Consider the following databaseD:

D =

TID Items

1 a, b, c, d

2 a, b, c

3 a, b, d, e

4 c, e

5 b, d, e

6 a, b, e

7 a, c, e

8 a, d, e

9 b, c, e

10 b, d, e



Some deduction rules forabc are the following:

supp(abc) ≥ supp(ab) + supp(ac) − supp(a) = 1
supp(abc) ≤ supp(ab) + supp(ac) + supp(bc)

−supp(a) − supp(b) − supp(c)
+supp({}) = 2

Hence, based on the supports of the subsets ofabc, we can
deduce thatsupp(abc) is in [1, 2].

In this paper, we will use Equation (2.1) to compute the
support ofI, based on the supports of its subsets, and the
support of the generalized itemsetG.

EXAMPLE 2. Some equalities for itemsetabc:
supp(abc) = supp(ab) − supp(abc)

= (supp(ab) + supp(ac) + supp(bc)
−supp(a) − supp(b) − supp(c)

+supp({})) − supp(abc) 2

Notice incidentally that the complexity of the term
δX(I) depends on the cardinality ofY = I \ X. The larger
Y is, the more complex it will be to compute the support of
I based onX ∪ Y . For example, forabcd,

δabc(abcd) = abc

δa(abcd) = abc + abd + acd − ab − ac − ad + a

In general, the number of terms inδX(I) is 2|I\X| − 1.
Therefore, whenever in the algorithm we have the choice
between two generalized itemsets, we will always choose the
set with the least negations, as this set will result in a more
efficient calculation of the support ofI.

2.2 Condensed Representation Based on the deduction
rules, it is possible to generate a summary of the set of
frequent itemsets. Indeed, iflI = uI , thensupp(I,D) =
lI = uI , and hence, we do not need to storeI in the
representation. Such a setI, will be called aDerivable
Itemset(DI), all other itemsets are calledNon-Derivable
Itemsets(NDIs). Based on this principle, in [10], the
following condensed representation was introduced:

NDI(D, σ) := {I | supp(I,D) ≥ σ, lI 6= uI}.

In the experiments presented in Section 5, it is shown that the
collection of non-derivable itemsets is much more concise
than the complete collection of frequent itemsets, and often
even more concise than other concise representations. For
a discussion on the relation between NDI and the other
condensed representation we refer to [9].

2.3 The NDI Algorithm In [10], in a slightly different
form, the following theorem was proven:

Algorithm 1 Eclat
Input: D, σ, I ⊆ I
Output: F [I](D, σ)

1: F [I] := {}
2: for all i ∈ I occurring inD do
3: F [I] := F [I] ∪ {I ∪ {i}}
4: // CreateDi

5: Di := {}
6: for all j ∈ I occurring inD such thatj > i do
7: C := cover({i}) ∩ cover({j})
8: if |C| ≥ σ then
9: Di := Di ∪ {(j, C)}

10: end if
11: end for
12: // Depth-first recursion
13: ComputeF [I ∪ {i}](Di, σ)
14: F [I] := F [I] ∪ F [I ∪ {i}]
15: end for

THEOREM 2.1. [10](Monotonicity) LetI ⊆ J be itemsets.
If supp(I) = δX(I), then, for allX ′ such thatX ⊆ X ′ ⊆
X ∪ (J \ I), supp(J) = δX′(J).

Hence, ifI is a derivable, thenJ is derivable as well.

Based on this theorem, a level-wise Apriori-like algorithm
was given in [10]. In fact, the NDI-algorithm corre-
sponds largely to constrained mining algorithms with non-
derivability as an anti-monotone constraint. In the candidate
generation phase of Apriori, additional to the monotonicity
check, the lower and upper bounds on the candidate itemsets
are computed. Such a check is possible, since in Apriori a
setI can only be a candidate after all its strict subsets have
been counted. The candidate itemsets that have an upper
bound below the minimal support threshold are pruned, be-
cause they cannot be frequent. The itemsets having lower
bound equal to the upper bound are pruned since they are
derivable. Because of Theorem 2.1, we know that the su-
persets of a derivable itemset will be derivable as well, and
hence, a derivable itemset can be pruned in the same way as
an infrequent itemset. Furthermore, from Theorem 2.1, we
can derive that if for a setI, supp(I) = lI , or supp(I) = uI ,
then all strict supersets ofI are derivable. These properties
lead straightforwardly to the level-wise algorithm NDI given
in [10].

3 The Eclat Algorithm

In this section we describe the Eclat-algorithm, since our
dfNDI-algorithm is based on it. Eclat was the first successful
algorithm proposed to generate all frequent itemsets in a
depth-first manner [18, 23]. Later, several other depth-first
algorithms have been proposed [1, 2, 13].

Given a transaction databaseD and a minimal support



thresholdσ, denote the set of all frequent itemsets with
the same prefixI ⊆ I by F [I](D, σ). Eclat recursively
generates for every itemi ∈ I the setF [{i}](D, σ). (Note
thatF [{}](D, σ) =

⋃
i∈I F [{i}](D, σ) contains all frequent

itemsets.)
For the sake of simplicity and presentation, we assume

that all items that occur in the transaction database are
frequent. In practice, all frequent items can be computed
during an initial scan over the database, after which all
infrequent items will be ignored.

In order to load the database into main memory, Eclat
transforms this database into itsvertical format. I.e., instead
of explicitly listing all transactions, each item is stored
together with its cover (also calledtidlist). In this way, the
support of an itemsetX can be easily computed by simply
intersecting the covers of any two subsetsY,Z ⊆ X, such
thatY ∪ Z = X.

The Eclat algorithm is given in Algorithm 1.
Note that a candidate itemset is represented by each

set I ∪ {i, j} of which the support is computed at line 7
of the algorithm. Since the algorithm doesn’t fully exploit
the monotonicity property, but generates a candidate itemset
based on only two of its subsets, the number of candidate
itemsets that are generated is much larger as compared to
a breadth-first approach such as apriori. As a comparison,
Eclat essentially generates candidate itemsets using onlythe
join step from Apriori, since the itemsets necessary for the
prune step are not available.

EXAMPLE 3. Let the minimal supportσ be2. We continue
working onD as given in Example 1. As illustrated in
Figure 1, Eclat starts with transforming the database into its
vertical format. Then, recursively, the conditional databases
are formed. The arcs indicate the recursion. The tree is
traversed depth-first, from left to right. For example, the
databaseDad is formed usingDa, by intersection the tid-
list of d with the tid-lists of all items that come afterd in Da.
The tid-lists with the item between brackets (e.g., the tid-list
for d in Dc) indicate lists that are computed, but that are not
in the conditional database because the item is infrequent.At
any time, only the parents of the conditional database being
constructed are kept in memory. For example, whenDad is
constructed, the databasesDa andD are in memory; once a
conditional database is no longer needed, it is removed from
memory.

A technique that is regularly used, is to reorder the items
in support ascending order. In Eclat, such reordering can be
performed at every recursion step between line 11 and line 12
in the algorithm.

The effect of such a reordering is threefold:

(1) The number of candidate itemsets that is generated is
reduced. The generation step of Eclat is comparable to

D
a b c d e

1 1 1 1 3
2 2 2 3 4
3 3 4 5 5
6 5 7 8 6
7 6 9 10 7
8 9 8

10 9
10

Da

b c d e

1 1 1 3
2 2 3 6
3 7 8 7
6 8

Db

c d e

1 1 3
2 3 5
9 5 6

10 9
10

Dc

(d) e

1 4
7
9

Dd

e

3
5
8
10

Dab

c d e

1 1 3
2 3 6

Dac

(d) (e)
1 7

Dad

e

3
8

Dbc

(d) (e)
1 9

Dbd

e

3
5
10

Dabc

(d) (e)
1

Dabd

(e)
3

Figure 1: Eclat traversal.

the join-step of Apriori: a seta1 . . . ak is generated if
botha1 . . . ak−1 anda1 . . . ak−2ak are frequent. By re-
ordering, the generating sets tend to have lower support
which results in less candidates.

(2) A second effect of the fact that the generating sets tend
to have lower support is that their tid-lists are smaller.

(3) At a certain depthd, the covers of at most allk-itemsets
with the samek − 1-prefix are stored in main memory,
with k ≤ d. Because of the item reordering, this
number is kept small.

Experimental evaluation in earlier work has shown that
reordering the items results in significant performance gains.

EXAMPLE 4. In Figure 2, we illustrate the effect of item
reordering on the dataset given in Example 1, with the same
support thresholdσ = 2. As compared to Example 3, the
tree is more balanced, the conditional databases are smaller,
and there are 3 less candidates generated.

3.1 Diffsets Recently, Zaki proposed a new approach to
efficiently compute the support of an itemset using the
vertical database layout [19]. Instead of storing the cover
of a k-itemsetI, the difference between the cover ofI and
the cover of thek − 1-prefix of I is stored, denoted by the
diffsetof I. To compute the support ofI, we simply need to
subtract the size of the diffset from the support of itsk − 1-
prefix. This support can be provided as a parameter within
the recursive function calls of the algorithm. The diffset of



(sorted) D

Dc

(d) a b e

1 1 1 4
2 2 7
7 9 9

Dd

a b e

1 1 3
3 3 5
8 5 8

10 10

Da

b e

1 3
2 6
3 7
6 8

Db

e

3
5
6
9
10

Dca

(e) b

7 1
2

Dcb

(e)
9

Dda

b e

1 3
3 8

Ddb

e

3
5
10

Dab

e

3
6

Ddab

(e)
3

Figure 2: Eclat traversal with reordered items.

an itemsetI ∪ {i, j}, given the two diffsets of its subsets
I ∪ {i} andI ∪ {j}, with i < j, is computed as follows:

diffset(I ∪ {i, j}) := diffset(I ∪ {j}) \ diffset(I ∪ {i}).

This technique has experimentally shown to result in signif-
icant performance improvements of the algorithm, now des-
ignated asdEclat [19]. The original database is still stored
in the original vertical database layout.

Notice incidentally that with item reordering,

supp(I ∪ {i}) ≤ supp(I ∪ {j}) .

Hence, diffset(I ∪ {i}) is larger thandiffset(I ∪ {j}).
Thus, to form diffset(I ∪ {i, j}), the largest diffset is
subtracted from the smallest, resulting in smaller diffsets.
This argument, together with the three effects of reordering
pointed out before, makes that reordering is a very effective
optimization.

EXAMPLE 5. In Figure 3, we illustrate the dEclat algorithm
with item reordering on the dataset given in Example 1, with
the same support thresholdσ = 2. The diffset of for example
dab (entryb in the conditional databaseDda), is formed by
subtracting the diffset ofda from the diffset fordb. Notice
that the items are ordered ascending w.r.t. their support,
and not w.r.t. the size of their diffset. The support ofdab

is computed as the support ofda (3) minus the size of its
diffset (1), which gives a support of2.

4 The dfNDI Algorithm

In this section we describe a depth-first algorithm for mining
all frequent non-derivable itemsets. The dfNDI algorithm
combines ideas behind the Eclat algorithm, the diffsets and
the deduction of supports into one hybrid algorithm.

The construction of the dfNDI-algorithm is based on the
following principles:

(sorted) D

∂Dc

(d) a b e

2 4 4 1
4 9 7 2
7
9

∂Dd

a b e

5 8 1
10

∂Da

b e

7 1
8 2

∂Db

e

1
2

∂Dca

(e) b

1 7
2

∂Dcb

(e)
1
2

∂Dda

b e

8 1

∂Ddb

e

1

∂Dab

e

1
2

∂Ddab

(e)
1

Figure 3: dEclat traversal with reordered items.

1. Just like Eclat, tidlists (and diffsets) will be used to
compute the support of itemsets. Recursively, condi-
tional databases will be formed. Hence, computing the
support of an itemset will, unlike in the breadth-first
version,not require a scan over the complete database.

2. There is one problem, however: to computeδX(I),
the supports of all setsJ such thatX ⊆ J ⊂ I

must be known. Since Eclat is a depth-first algorithm,
many of these supports are not available. This problem,
however, can be solved by changing the order in which
the search space is traversed. By changing the order,
we can keep a depth-first approach, and still have the
property that all subsets of a setI are handled beforeI
itself.

3. Because we need the support of already found sets to
compute bounds of their supersets, we will maintain the
found frequent non-derivable itemsets in a specialized
structure that allows fast lookup. Since the number
of non-derivable itemsets is in general much lower
than the number of frequent itemsets, the memory
requirements for the specialized storage is not too bad;
also, it is comparable to the amount of memory used in
the ChARM algorithm to store all found frequent closed
itemsets [22].

4. The deduction rules allow to extend the diffsets to
tidlists of arbitrary generalized itemsets. That is, if
we want to determine the support of a setI, we can
use the cover of any of the generalized itemsets based
on I. Then, based on the support of the generalized
itemsetX ∪ Y , and onδX(I), the support ofI itself
can be computed. This flexibility allows us to choose a
generalized itemset that has minimal cover size.

In the rest of the section we concentrate on these four
points. Then, we combine them and give the pseudo-code of
dfNDI, which is illustrated with an example.



4.1 Order of Search Space Traversal We show next how
we can guarantee in the Eclat-algorithm that for all sets
I the support of its subsets is computed beforeI itself is
handled. In Eclat, the conditional databases are computed in
the following order (see Example 3):

D → Da → Dab → Dabc → Dabcd

→ Dabd

→ Dac → Dacd

→ Dad

→ Db → Dbc → Dbcd

→ Dbd

→ Dc → Dcd

→ Dd

Since the support of a seta1 . . . an is computed as the
cardinality of the tidlist ofan in the conditional database
Da1...an−1 , the supports of the itemsets are compute in the
following order:

{a, b, c, d, e}, {ab, ac, ad, ae}, {abc, abd, abe},
{abcd, abce}, {abcde}, {abde}, {acd, ace},
{acde}, {ade}, {bc, bd, be}, {bcd, bce}, {bcde},
{bde}, {cd, ce}, {cde}, {de}

Hence, for example, when the support ofabcd is computed,
the supports ofbc, bd, cd, acd, andbcd are not counted yet.
Therefore, when the search space is explored in this way,
all rules forabcd that use one of these five sets cannot be
computed.

An important observation now is that for every setI,
all subsets either occuron the recursion pathto I, or after
I. For example, the support ofabcd is computed inDabc.
The supports of the subsets ofabcd are either computed on
the recursive path:a, b, c, d in D, ab, ac, ad in Da, abc, abd

in Dab, or after abcd: acd in Dac, which is constructed
after the recursion belowDab, bc, bd in Db, which comes
after the recursion belowDa has ended, andcd in Dc,
which comes after the recursion belowDb has ended. We
can view the recursive structure between the conditional
databases in Eclat as a tree, in which the children are ordered
lexicographically, as is illustrated in Figure 4. This treeis by
Eclat traversed depth-first, and from left-to-right; that is: in
pre-order. Let the node associated with an itemsetI be the
node of the conditional database in which the support ofI is
computed. The observation can now be restated as follows:
the nodes of the subsets ofI are either on the path fromD to
the node ofI, or are in a branch that comes afterI, neverin
a branch that comesbeforethe branch ofI.

Hence, we can change the order as follows: the same
tree is traversed, still depth-first, but, from right to left. We
will call this order thereverse pre-order. The numbers in the
nodes of the tree in Figure 4 indicate the reverse pre-order.
In this way, the path fromD to the node of a setI remains

D 1

Da 9 Db 5 Dc 3 Dd 2

Dab 13 Dac 11 Dad 10 Dbc 7 Dbd 6 Dcd 4

Dabc 15 Dabd 14 Dacd 12 Dbcd 8

Dabcd 16

Figure 4: Recursive structure between the conditional data-
bases

the same, but all branches that come after the branch ofI,
are now handledbeforethe branch ofI. As such, in reverse
pre-order, all subsets ofI are handled beforeI itself.

Besides enabling a depth-first algorithm for mining non-
derivable itemsets, the reverse pre-order has other applica-
tions as well: a similar technique can be used when min-
ing downwards closed collections of itemsets in a depth-first
manner while preserving full pruning capabilities. It must
be noted however that this ability comes the cost to store all
found itemsets in the collection. Hence, the usefulness of this
technique can be compromised when the downward closed
collection becomes too large. For such large collections it
is probably better to sacrifice part of the pruning in order
to loose the store of generated itemsets. For small collec-
tions though, the reverse pre-order is very useful. Many con-
densed representations, such as the non-derivable itemsets,
are typical examples of relatively small downward closed
collections of itemsets.

Notice also that the reverse pre-order has no repercus-
sions on performance or memory usage; the same covers are
computed, and the same covers are in memory simultane-
ously; only theorder in which they are generated differs.
However, now we are guaranteed thatall subsets ofI are
handled beforeI itself.

Another very important remark is that this guarantee
remains even when at every step in the recursion the items
in the conditional databases are reordered according to their
support. Hence, we can still apply the important item
reordering techniques.

EXAMPLE 6. Consider the tree in Example 4 that was con-
structed with item reordering. The numbers in the nodes in-
dicate the reverse pre-order.

The reason that the same relation between a set and
its subsets still applies can be seen as follows: the itemset
abde is counted in the conditional databaseDdab as the
cardinality of the tidlist ofe. Hence, the order in which the
items ofabde were selected is:dabe. That is: (a) in the
databaseD, d came beforea, b and e; (b) in Dd, a came
beforeb and e; and (c) inDda, b came beforee. Since the



D 1

Dc 9 Dd 5 Da 3 Db 2

Dca 11 Dcb 10 Dda 7 Ddb 6 Dab 4

Ddab 8

items in a conditional database are processed backwards in
the recursion, therefore, (a)a, b, d, e are inD, andab, ae,
be, abe are handled beforeDd is constructed, (b)ad, bd and
de are in Dd, and bde handled beforeDda is constructed,
and (c)ade andabd are inDda.

In general, letI be an itemset and the elements ofI are
chosen in the orderi1 . . . in. LetJ be a strict subset ofI. If J

corresponds to a prefix ofi1 . . . in, thenJ is computed on the
recursive path toDi1...in−1 . Otherwise, letij be the first item
of i1 . . . in that is not inJ . Then, in the conditional database
Di1...ij−1 , all items inJ \ {i1, . . . , ij−1} come strictly after
ij , and hence, the node forJ is on the right of the node forI
and is thus visited beforeI in the reverse pre-order.

4.2 Storing the Found NDIs The frequent non-derivable
itemsets are stored together with their supports in a structure
that allows for fast look-up of the supports. The itemsets
are stored in such a way that fast lookup of the supports is
possible. In our implementations, an itemset trie was used
for this purpose.

In the extreme case that the number of non-derivable
itemsets becomes too large to be maintained in main mem-
ory, a condensed representation [15] can be used as well. For
example, only the closed itemsets [16] could be stored. Fi-
nally, remark that it is not uncommon that an algorithm needs
to maintain itemsets in main memory. Most closed itemset
mining algorithms need to store the found frequent closed
sets in main memory (e.g. Charm [21]).

4.3 Generalizing the Diffsets In Eclat and dEclat, the
conditional databaseDI∪{i} is generated from the database
DI if this database contains itemi. All itemsj > i that are in
DI will be in the conditional databaseDI∪{i}. In Eclat, the
tidlist of j in DI∪{i} is computed by intersecting the tidlists
of i andj in DI . In dEclat, not the tidlists are maintained
in the conditional databases, but the diffsets. The diffsetof
j in DI∪{i} is computed by subtracting the diffset ofi in
DI from the diffset ofj in DI . Hence, with the general-
ized itemsets notation, in Eclat the conditional database for
DI∪{i} contains for all itemsj > i, (j, cover(I ∪ {i, j})).
dEclat maintains for all itemsj > i, (j, cover(I ∪ {i, j}))
in the conditional databaseDI∪{i}.

In dfNDI, we will use a similar procedure. First of

Input: D, σ

Output: Dl

1: for all k occurring inD afterl do
2: // k is eitherj or j

3: C[k] := cover({l}) ∩ cover({k})
4: C[k] := cover({i}) \ cover({k})
5: if {i, j} is σ-frequentthen
6: if |C[j]| ≤ |C[j]| then
7: D{i} := D{i} ∪ {(j, C[j])}
8: else
9: D{i} := D{i} ∪ {(j, C[j])}

10: end if
11: end if
12: end for

Figure 5: Recursive construction ofDl in dfNDI

all, the diffsets are extended to covers of arbitrary gen-
eralized itemsets. That is, not only covers of the type
cover(I ∪ {i, j}) andcover(I ∪ {i, j}) will be considered,
but alsocover(X ∪ Y ) for any generalized itemsetX ∪ Y

based onI ∪ {i, j}. Secondly, the choice for which type
of cover is not static in dfNDI. In contrast, in Eclatalways
cover(I ∪ {i, j}), and in dEclat,alwayscover(I ∪ {i, j}) is
used. In dfNDI, this choice will be postponed to run-time. At
run-time both covers are computed, and the one with mini-
mal size is chosen. In this way it is guaranteed that the size
of the covers at leasthalvesfromD toDi. The calculation of
both covers can be done with minimal overhead in the same
iteration. When iterating over the cover of{i}, the set of
all tid’s that are not incover({i}) ∩ cover({j}) is exactly
cover({i}) \ cover({j}).

Let D be a database that contains tidlists of both items
and of negations of items. Letl be the list associated with
item i. That is, l is either i or i. The procedure used in
dfNDI to construct the conditional databaseDl from D is
given in Figure 5. The procedure is applied recursively.
Suppose that we have recursively constructed databaseDG,
with G = X ∪ Y a generalized itemset. For every itemi
(resp. negated itemi) in DG, the cardinality of the tidlist is in
fact the support of the generalized itemsetX∪{i}∪Y (resp.
X ∪ Y ∪ {i}) The support test in line 5 is then performed
using the deduction rules as explained in Section 2. For
example, supposel = i andk = j. Let J = X ∪ Y ∪ {i, j}.
The valueδX∪{i}(J) is computed (using the stored supports)
and from this value and the size of the cover ofX∪{i, j}∪Y ,
the support ofJ can be found:

supp(J) = δX∪{i}(J) + (−1)|Y |supp(X ∪ {i, j} ∪ Y )

Notice also that if C[j] (resp. C[j]) is empty,
supp(G ∪ {i, j}) = 0 (resp. supp(G ∪ {i, j}) = 0). From
Theorem 2.1, we can derive that in that situation, every su-
perset ofX ∪ Y ∪ {i, j}) is a derivable itemset.



EXAMPLE 7. Consider the following databaseD, and the
conditional databasesDa andDab:

D
a b c d

1 1 2 1
2 2 4 2
3 3 5 3
5 7 6 9
8 7

→

Da

b c d

5 2 5
8 5 8

→
Dab

c d

5

Da containsb becausecover(a) \ cover(b) is smaller than

cover(a) ∩ cover(b). Dab contains d since cover(b) \
cover(d) is smaller thancover(b) ∩ cover(d) in Da.

The support ofabc is counted via the cover ofc in Dab.
Since this cover contains one element,supp(abc) = 1, and
hence,

supp(abc) = supp(ac) − supp(abc) = 2 − 1 = 1.

The support ofab is found in the trie that maintains the found
frequent non-derivable itemsets. Notice that the cover ofd

in Dab is empty. Therefore,supp(abd) = 0, and thus, every
superset ofabd is derivable.

4.4 The Full dfNDI Algorithm The combination of
the techniques discussed in this section give the dfNDI-
algorithm described in Algorithm 2. In the recursion, the
generalized itemsetG that corresponds to the items or
negated items that were chosen up to that point, must be
passed on. Hence, the set of all frequent NDIs is given by
dfNDI(D, σ, {}). We assume thatD is given in vertical for-
mat, and that all items inD are frequent.

As already mentioned before, reordering the items in
the different conditional databases does not fundamentally
change the algorithm. With reordering, we are still guar-
anteed that all subsets of an itemsetI are handled beforeI
itself. Therefore, in the experiments, we will use item re-
ordering techniques to speed up the computation. There are
different interesting orderings possible:

1. Ascending w.r.t. support: the advantages of this order-
ing are that the number of generated candidates is re-
duced, and that the tree is more balanced. Since for
every candidate, lower and upper bounds on the sup-
port are computed, generating less candidates can be
very interesting.

2. Ascending w.r.t. size of the cover: with this ordering,
the size of the covers will in general be smaller, since
the covers of the first items in the order are used more
often than the covers of the items later in the ordering.

Depending on the application, either the first or the last
ordering will be better. Which one is the best probably

Algorithm 2 dfNDI

Input: D, σ,G = X ∪ Y

Output: dfNDI(D, σ,G)
1: dfNDI := {}
2: for all l that occur inD, ordered descendingdo
3: // l = i or l = i, for an itemi

4: dfNDI := dfNDI ∪ {(X ∪ Y ∪ {i})}
5: // CreateDl

6: Dl := {}
7: for all k occurring inD afterl do
8: // k = j or k = j, for an itemj

9: // Let J = X ∪ Y ∪ {i, j}
10: Compute bounds[l, u] on support ofJ ;
11: if l 6= u andu ≥ σ then
12: // J in an NDI
13: StoreJ in the separate trie
14: // Compute the support ofJ
15: C[k] := cover({l}) ∩ cover({k})
16: C[k] := cover({l}) \ cover({k})
17: // |C[j]| is supp(X ∪ Y ∪ {l, j})
18: Computesupp(J) based on the support of its

subsets and on|C[j]|
19: if supp(J) ≥ σ and supp(J) 6= l and

supp(J) 6= u then
20: if |C[j]| ≤ |C[j]| then
21: Dl := Dl ∪ {(j, C[j])}
22: else
23: Dl := Dl ∪ {(j, C[j])}
24: end if
25: end if
26: end if
27: end for
28: // Depth-first recursion
29: ComputedfNDI(Dl, σ,G ∪ {l})
30: dfNDI := dfNDI ∪ dfNDI(Dl, σ,G ∪ {l})
31: end for



depends on the selectivity of non-derivability versus the
selectivity of frequency. If most sets are pruned due to non-
derivability, the second ordering will be more interesting
than the first. If frequency is the main pruner, the first order
is more interesting.

There are many different variants possible of the dfNDI
algorithm. Depending on the situation, one variant may be
better than the other.

1. Ordering the items in the conditional databases, as
described above.

2. Since computing the bounds can be very costly, we
want to avoid this work as much as possible. Hence,
in situations where frequency is highly selective, it is
better to switch the support test and the non-derivability
test. That is, lines 10 and 11 in Algorithm 2 are
moved to after the if-test on line 19. Evidently, the test
supp(J) 6= l, u is removed from the if-test on line 19 to
after the calculation of the bounds. Hence, only bounds
are computed on itemsets that are frequent.

3. Another possibility to reduce the amount of work on
the calculation of the bounds is not to compute all
bounds, but only a limited number. A similar approach
already turned out to be quite useful in the context of the
breadth-first NDI-algorithm [10]. There, the depth of a
rule based onX ∪ Y was defined as|Y |. The lower the
depth of a rule, the less complex. Instead of computing
all rules, only rules up to a limited depth can be used. In
practice it turned out that most of the time using rules
up to depth3 does not affect the precision of the rules.
Put elsewhere, most work is done by the rules of limited
depth.

EXAMPLE 8. We illustrate the dfNDI algorithm on the data-
base of Example 3. Every conditional database is ordered
ascending w.r.t. the size of the cover. The tid-lists with the
item between brackets indicate lists that are computed, but
that are not in the conditional database, because the itemset
I associated with the item is either (a) infrequent (e.g.d in
Dc)), or (b) supp(I) = lI or supp(I) = uI . In case (b),I
is a frequent NDI, but all supersets ofI are derivable. The
items in case (b) are indicated in bold.

We start with the databaseD. Because of the reverse
pre-order that is used, first the databaseDb is constructed.
Only iteme comes afterb in D. The lower and upper bounds
onbe are computed.lbe = supp(b)+supp(e)−supp(∅) = 5,
ube = supp(b) = 7. Hence,be is not derivable. Both
cover(b)∩cover(e) andcover(b)\cover(e) are constructed.
|cover(b) ∩ cover(e)| = 5, and hence,supp(be) = 5. Since
supp(be) = lbe, all supersets ofbe must be derivable.

NextDa is constructed. Forab the following lower and
upper bound is computed:lab = 3, uab = 6. The two covers
cover({a}) ∩ cover({b}) andcover({a}) \ cover({b}) are

computed. From the size of these covers, the support ofab

is computed:supp(ab) = 4. Because the support differs
from the lower and the upper bound,b will be in Da. Since
cover({a}) \ cover({b}) was the smallest of the two covers,
(b, cover({a}) \ cover({b})) is added. Then the iteme is
handled. The bounds forae are: lae = 4, uae = 6. Thus,ae

is non-derivable. The two covers forae are computed and
the support is derived:supp(ae) = 4. Becausesupp(ae) =
lae, item e will not be added toDa, because all supersets
of ae must be derivable. This procedure continuous until all
items are handled. In the construction ofDde, it turns out
that ade is derivable, sinceδd(ade) = 2, andδ∅(ade) = 2,
and hencelade = uade = 2.

D

Db

(e)
1
2

Da

b (e)
7 1
8 2

Dd

b e a

8 1 5
10

Dc

(d) a b (e)
1 4 4 1

9 7 2

Dde

(a)

Ddb

(e) (a)

Dca

b (e)
9

The collection of frequent non-derivable itemsets in this
example is:

{∅, a, b, c, d, e, ab, ac, ad, ae, bc, bd, be, ce, de, abc, abd}

5 Experiments

The experiments were performed on a 1.5GHz Pentium IV
PC with 1GB of main memory. To empirically evaluate
the proposed dfNDI-algorithm, we performed several tests
on the datasets summarized in the following table. For
each dataset, the table shows the number of transactions, the
number of items, and the average transaction length.

Dataset # trans. # items Avg. length
BMS-POS 515 597 1 656 6,53
Chess 3 196 76 37
Pumsb 49 046 2 112 74
Mushroom 8 124 120 23

These datasets are all well-known benchmarks for fre-
quent itemset mining. TheBMS-POSdataset contains click-
stream data from a small dot-com company that no longer
exists. These two datasets were donated to the research com-
munity by Blue Martini Software. ThePumsb-dataset is
based on census data, theMushroomdataset contains char-
acteristics from different species of mushrooms. TheChess
dataset contains different game configurations. The Pumsb
dataset is available in the UCI KDD Repository [14], and
the Mushroom and Chess datasets can be found in the UCI
Machine Learning Repository [6].

Obviously, as the number of non-derivable frequent
itemsets is significantly smaller than the total number of
frequent itemsets, it would be unfair to compare the per-



formance of the proposed algorithm with any other normal
frequent itemset mining algorithm. Indeed, as soon as the
threshold is small enough or the data is highly correlated,
it is well known that traditional techniques fail, simply due
to the massive amount of frequent sets that is produced,
rather than any inherent algorithmic characteristic of theal-
gorithms. Therefore, we merely compare the performance of
dfNDI with NDI. Also note that a thorough comparison of
the sizes of different condensed representations has already
been presented in [10] and will not be repeated here.

In our experiments, we compared the NDI algorithm
with three different versions of the dfNDI algorithm. The
first version, ‘dfNDI’, is the regular one as described in
this paper. The second version, ‘dfNDI - negations’, does
not allow to use the covers of generalized itemsets, and
hence, stores the full cover of every candidate itemset and
always computes the covers by intersecting the covers of
two subsets. The third version, ‘dfndi + support order’ is the
dfNDI algorithm in which items are dynamically reordered
in every recursion step accoring to their support, while
the regular dfNDI algorithm orders the items according
to the cover of the generalized itemset it represents. All
experiments were performed for varying minimum support
thresholds. The result can be seen in Figures 6 and 7.

First, we compared the time performance of these four
algorithms. As expected, dfNDI performs much better
compared to NDI. Using the smallest cover of a generalized
itemset based on the current itemset also has a significant
effect, which is especially visible in the pumsb dataset. This
is of course mainly due to the faster set intersection and set
difference operations on the smaller covers. Ordering the
items according to the size of the covers also proves to be
better as compared to ordering according to the support of
the items, although the difference is never very big.

In the second experiment, we compare the memory
usage of the four algorithms. As can be seen, the NDI
algorithm needs least amount of memory. Of course, this
is expected as the dfNDI also stores parts of the database in
main memory. Fortunately, the optimization of storing only
the smallest cover of each generalized itemset indeed shows
to result in reduced memory usage. Again, the ordering
based on the cover seems to result in a little bit better
memory usage.

6 Conclusion

In this paper, we presented a new itemset search space
traversal strategy, which allows depth-first itemset mining
algorithms to exploit the frequency knowledge of all subsets
of a given candidate itemset. Second, we presented a
depth-first non-derivable itemset mining algorithm, which
uses that traversal as it needs for every generated candidate
itemset, all of its subsets. From the viewpoint of condensed
representations of frequent sets, the non-derivable itemset

collection has already been shown to be superior to all other
representations in almost all cases. Third, we generalized
the diffsets technique and store the cover of an itemset
containing several negated items. These covers are typically
much smaller than the usual covers of regular itemsets,
and hence, allow faster set intersection and set difference
operations. The resulting algorithm, dfNDI, thus inherits
all positive characteristics from several different techniques
allowing fast discovery of a reasonable amount of frequent
itemsets that are not derivable from their subsets. These
claims are supported by several experiments on real life
datasets.
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