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ABSTRACT
Computing frequent itemsets is one of the most prominent
problems in data mining. We introduce a new, related prob-
lem, called FREQSAT: given some itemset-interval pairs, does
there exist a database such that for every pair the frequency
of the itemset falls in the interval? It is shown in this pa-
per that FREQSAT is not finitely axiomatizable and that it
is NP-complete. We also study cases in which other char-
acteristics of the database are given as well. These charac-
teristics can complicate FREQSAT even more. For example,
when the maximal number of duplicates of a transaction is
known, FREQSAT becomes PP-hard. We describe applica-
tions of FREQSAT in frequent itemset mining algorithms and
privacy in data mining.

1. INTRODUCTION
The frequent itemset mining problem [1] is one of the core
problems in data mining. We are given a database D of
sets, called transactions, and a threshold minfreq. The
frequency of a set I in D is the number of transactions in
D that contain all items of I divided by the total number
of transactions in D. The frequent itemset problem is to
compute all sets I such that the frequency of I in D is at
least minfreq.

During the last decade, many algorithms to solve this prob-
lem were developed. For an overview, see [10]. All these fre-
quent itemset mining algorithms rely heavily on the mono-
tonicity of frequency: if I ⊆ J , then the frequency of J is
bounded from above by the frequency of I. In general, this
property of frequency allows for pruning substantial parts
of the search space. Besides monotonicity, also other re-
lationships between the frequencies can be identified. For
example, in the MAXMINER algorithm [4], relations of the
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following form are exploited:

freq({a, b, c}) ≥ freq({a, b}) + freq({a, c})− freq({a}) .

There are many more relations between the frequencies of
itemsets. See [5] for extensions based on the inclusion-
exclusion principle.

The relationships between the frequencies of itemsets can
be seen as consistency constraints; only configurations of fre-
quencies that satisfy these relationships, represent valid out-
comes of frequent itemset mining. In this paper we are in-
terested in the complexity of checking satisfiability of a given
set of frequencies. In this context, we introduce the problem
FREQSAT: given a collection of expressions freq(I) ∈ [a, b],
does there exist a transaction database that satisfies them?
For example, {freq({a}) ∈ [0, 0.5], freq({a, b}) ∈ [0.6, 1]} is
not satisfiable, because of the monotonicity of frequency.

We prove that FREQSAT is not finitely axiomatizable. Hence,
there are infinitely many non-redundant relations between
frequencies. We show that FREQSAT is equivalent to proba-
bilistic satisfiability [14], and hence NP-complete [9]. We
also show that in FREQSAT we are able to express condi-
tional frequencies. This ability allows us to express the con-
fidence of association rules, and links FREQSAT to probabilis-
tic logic programming with conditional constraints as studied
by Lukasiewicz in [11].

We furthermore study cases in which, besides the frequency
of itemsets, other characteristics of the database are given
as well. Consider the following set C of constraints:

{freq({a}) =
1

2
, freq({b}) =

1

2
,

freq({c}) =
1

2
, freq({a, b, c}) = 0}

C is satisfiable by the database {a, b}, {a, c}, {b, c}, {}. If we,
however, require that the number of transactions is 2, or that
every transaction contains at most 1 item, C is no longer sat-
isfiable. This simple example already shows that a seemingly
small adaptation of the original problem can have a large in-
fluence. Another important difference is in the entailment.
ENTI(C) will denote the set of all possible frequency values
for I given that C holds. For FREQSAT, ENTI(C) is always
an interval of the rational numbers. If we, however, fix the
number of transactions, the set ENTI(C) can be any finite
subset of rational numbers between 0 and 1.



The characteristics we consider are: themaximal transaction
size, the number of transactions, and the maximal number
of duplicates of a transaction. The complexity of the prob-
lem depends on the additional characteristics. We show that
adding the transaction length does not affect the complexity
of FREQSAT. Adding the number of transactions changes the
properties of FREQSAT drastically, but it is left open whether
it increases the complexity. Adding the maximal number of
duplicates makes the problem provably more complex (as-
suming NP 6= PP).

Besides being of theoretical interest, FREQSAT and its vari-
ants have many practical applications too. These appli-
cations include: improving pruning in frequent set min-
ing algorithms, constructing concise summaries of the fre-
quent itemsets, and checking whether publishing the fre-
quent itemsets provides a threat to the privacy of the origi-
nal dataset.

The organization of the paper is as follows. In Section 2
we formally introduce important notions such as frequency
constraints and entailment. Section 3 states the different
variants of FREQSAT studied in the paper. In Section 4
FREQSAT without the extensions is studied. Then, in Sec-
tions 5, 6, and 7, FREQSAT is gradually extended with bounds
on the transaction length, the number of transactions, and
the number of duplicates. Section 8 gives some applications
of FREQSAT and its variants, and Section 9 summarizes the
most important results and concludes the paper.

2. PRELIMINARIES
2.1 Itemsets
Let I be a finite set of items. A transaction over I is a
pair (tid, J), with tid an identifier, and J a subset of I. A
transaction database over I is a finite set of such transac-
tions where every transaction has a unique identifier. Let I
be some set of items. We say that the transaction (tid, J)
contains I, denoted I ⊆ (tid, J), if I ⊆ J . The support of I
in D, denoted supp(I,D), is the absolute number of transac-
tions in D that contain I. The frequency of I in D, denoted
freq(I,D), is supp(I,D) divided by the number of transac-
tions in D. In all what follows, D is a transaction database
over I.

2.2 Frequency Constraints
A Frequency Constraint is an expression freq(I) ∈ [l, u], with
I an itemset, and 0 ≤ l, u ≤ 1 rational numbers. We say that
D satisfies this expression, denoted D |= freq(I) ∈ [l, u], if
the frequency of I in D is in the interval [l, u]. D satisfies
a set of frequency constraints, if it satisfies all of them. A
set of frequency constraints C entails a constraint freq(I) ∈
[l, u], denoted C |= freq(I) ∈ [l, u], if every database D that
satisfies C, satisfies freq(I) ∈ [l, u] as well. The entailment is
said to be tight , denoted C |=tight freq(I) ∈ [l, u], if for every
smaller interval [l′, u′] ⊂ [l, u], C does not entail freq(I) ∈
[l′, u′]. That is, if [l, u] is the best interval that can be derived
for I, based on C.

For notational convenience, we use the shorthand freq(I) =
f for freq(I) ∈ [f, f ].

2.3 Database Characteristics

In realistic situations, often, more characteristics of a trans-
action database are known than only the frequencies of some
sets. We now describe what extra information we will con-
sider in this paper.

Number of Transactions The size of the database |D| is
often known to the user. Knowing the number of transac-
tions seriously affects the properties of FREQSAT.

Transaction Length The number of items is of course
always an upper bound for the maximal number of items
in a transaction. Often, however, the maximal size of the
transactions is given. Moreover, it is a common practice
in frequent itemset mining to start from a relational table
R(A1, . . . , An), and to encode this table as a transaction
database before mining. This transformation is carried out
as follows: for every attribute-value pair A, v of R, an item
I(A,v) is introduced. A tuple (v1, . . . , vn) is represented by
the transaction {I(A1,v1), . . . , I(An,vn)}. Hence, if the orig-
inal schema is known, also the maximal transaction size is
known.

Number of Duplicates In our definition of frequent set
mining we did not require that the set of items in a trans-
action is unique; due to the identifier, two different trans-
actions can have the same set of items. In many practical
situations, however, duplicates cannot occur, or a maximal
number of duplicates is known. For example, in case the
transaction database was created from a relational table,
no duplicate transactions can be present. Even if some at-
tributes of the original table are filtered away, the maximal
possible number of duplicates might be known. Suppose
that the table R(A1, . . . , An) is transformed as described
above, but some, binary valued attributes A1, . . . , Ak are
filtered away. In that case, the number of duplicates is at
most 2k.

2.4 Complexity Classes
We give a brief overview of the complexity classes used
throughout this paper. For a more comprehensive overview,
we refer to [15].

DP is the complexity class that contains all languages L
such that there exist languages L1 ∈ NP and L2 ∈ co−NP

with L = L1 ∩ L2. NP is included in DP, and unless
NP = co−NP, this inclusion is strict. DP on its turn

is included in PNP, the class of languages decidable in
polynomial time with an NP-oracle. The prototypical DP-
complete problem is SAT-UNSAT. SAT-UNSAT contains all
pairs of Boolean formulas φ, ψ, such that φ is satisfiable,
and ψ unsatisfiable.

We say that a language L is in PP if there exists a non-
deterministic polynomially bounded Turing machine N such
that, for all inputs x, x ∈ L if and only if more that half of
the computations of N on input x end up accepting. We
say that N decides L “by majority”. It is known that NP is
included in PP. It is also widely believed that this inclusion
is strict, for a number of reasons. First, PP is closed under
complement, whereas NP is believed to be not. Second,
Toda’s theorem states that the polynomial hierarchy PH

is a subset of PPP. Hence, PP = NP would cause the



polynomial hierarchy PH to collapse to PNP. PPP is
included in PSPACE. The MAJSAT-problem, asking if more
than half of the truth assignments for a given formula φ are
accepting, is PP-complete.

Let Q be a polynomially balanced, polynomial-time decid-
able binary relation. The counting problem associated with
Q is the following: Given x, how many y are there such that
(x, y) ∈ Q? The output required is an integer in binary. #P
is the class of all counting problems associated with polyno-
mially balanced, polynomial-time decidable relations. #SAT,
the problem asking for the number of accepting truth as-
signments of a given Boolean formula, is #P-complete. The
relation between PP and #P is best summarized by the

following equality, due to Angluin: P#P = PPP. Hence,
their complexity is comparable.

Unless explicitly mentioned otherwise, we use logspace re-
ductions throughout the paper. L1 ≤ L2 denotes that L1 is
logspace reducible to L2, and L1 ≡ L2 denotes L1 ≤ L2 and
L1 ≥ L2.

3. PROBLEM STATEMENT
We are now ready to state the main problems in this paper:
the FREQSAT-problem and its variants.

Problem FREQSAT:
Input: A set of frequency constraints

C = {freq(Ij) ∈ [lj , uj ], j = 1 . . .m}

Accept: if and only if there exists a databaseD over
⋃m
j=1 Ij

that satisfies C. 2

As we discussed before, we also study cases wherein more
characteristics of the database D are known. Consider the
following characteristics of a transaction database:

ltrans(D) =def max{|J | | (tid, J) ∈ D}

ntrans(D) =def |D|

ndup(D) =def max
J⊆I

|{tid | (tid, J) ∈ D}|

FREQSAT{c1, . . . , ck} is the variant of the FREQSAT-problem
where upper bounds on the characteristics c1, . . . , ck are part
of the input as well. Hence, FREQSAT{ltrans, ndup} denotes
the variant in which besides frequency constraints, a maxi-
mal transaction length and a maximal number of duplicates
have been given as well.

Problem FREQSAT{c1, . . . , ck}:
Input: A tuple (C, v1, . . . , vk), with C a set of frequency
constraints

{freq(Ij) ∈ [lj , uj ], j = 1 . . .m} ,

and v1, . . . , vk numbers.
Accept: if and only if there exists a databaseD over

⋃m
j=1 Ij

that satisfies C and for all l = 1 . . . k, cl(D) ≤ vl. 2

The main question in this paper is: what are the compu-
tational complexities of the different FREQSAT-variants, and
what are the relations and differences between them?

4. FREQSAT

In this section we study the base case where no additional
characteristics of the database are given. We show that
FREQSAT is NP-complete, by proving that it is equivalent to
probabilistic satisfiability (pSAT) [14]. This equivalence also
gives important properties of the FREQSAT-problem, such as
that the possible frequencies of an itemset I given a set of
constraints is always an interval [l, u].

We also show that confidence of association rules can be
expressed with FREQSAT. Because of this, we can use com-
plexity results of Lukasiewicz in the context of probabilistic
logic programming with conditional constraints [11]. These
results concern the complexities of deciding whether C en-
tails freq(I) ∈ [l, u] (tight), and the function problem asking
for the tight interval for I given C.

4.1 Probabilistic Satisfiability
The probabilistic satisfiability problem (pSAT) [14] is defined
as follows: Consider m logical sentences over the variables
x1, . . . , xn with the usual Boolean operators ¬, ∨, ∧. As-
sume probabilities π1, . . . , πm for these sentences to be true
are given. Does there exist a probability distribution over
the truth assignments over x1, . . . , xn that make these prob-
abilities true; i.e., are the probabilities consistent? In [9],
it is proven that pSAT is NP-complete. The extension from
exact probabilities π1, . . . , πm to intervals does not change
the computational properties of pSAT.

We can relate FREQSAT to pSAT as follows: Consider the
items as variables, and the transactions as truth assign-
ments. A transaction (tid, J) corresponds to the assignment
that makes all items i ∈ J true, and the others false. A
transaction database then represents a probability distribu-
tion over the different truth assignments. The probability of
a certain assignment is the fraction of transactions represent-
ing this valuation. The frequency of an itemset {i1, . . . , ik}
in the database D, is now equal to the probability of the
conjunction

∧k
j=1 ij . Hence, we can easily reduce FREQSAT

to pSAT. Therefore, FREQSAT is inNP. The following lemma
says that given a set of frequency constraints C, the set of
possible frequencies for I is always an interval that can be
described succinctly. It also gives an upper bound on the
number of transactions of a minimal satisfying database for
C.

Lemma 1. For every set of frequency constraints C, and
itemset I, the set

ENTI(C) =def {freq(I,D) | D |= C}

is always an interval [l, u] of the rational numbers, with l and
u having polynomial length in the length of the description
of C.

Furthermore, every satisfiable C has a satisfying database D
with at most 2c transactions, with c polynomial in the length
of the description of C.

On the other hand, we can extend FREQSAT to include fre-
quency constraints over arbitrary Boolean formulas. This
shows in fact that we can also reduce pSAT to FREQSAT.

Reduction from pSAT to FREQSAT: An extended frequency



constraint is an expression freq(ϕ) ∈ [l, u], with ϕ a Boolean
formula over the set of items I. We say that a transaction
(tid, J) satisfies ϕ, if the truth assignment V that assigns
1 to an item i if and only if i ∈ J , makes ϕ true. Frequency
of a Boolean formula, and the satisfaction and entailment
of an extended frequency constraint are now defined in the
same way as for itemsets and regular frequency constraints.
It is easy to see that the extension of FREQSAT to arbitrary
Boolean formulas gives pSAT. We thus show that in FREQSAT

we can simulate extended frequency constraints.

Let P = {freq(ϕ1) ∈ [l1, u1], . . . , freq(ϕm) ∈ [lm, um]} be
a set of m extended frequency constraints with ϕ1, . . . , ϕm
Boolean formulas over the set of items {i1, . . . , in}. For ev-
ery subexpression σ of the formulas ϕ1, . . . , ϕm (also for the
items), we introduce two new items, tσ and fσ. tσ stands for
σ is true, and fσ for σ is false. A transaction T = (tid, J)
will represent the truth assignment VT that assigns true to
all items such that ti is in J , and false to the others. We
will now add constraints such that tσ is in a transaction T
if and only if the truth assignment VT makes σ true.

The main crux in the reasoning is that only half of the trans-
actions will represent valid truth assignments. These trans-
actions will contain the item d, the others contain item d
(hence, d is in fact not d):

freq({d}) = 0.5, freq({d}) = 0.5,

freq({d, d}) = 0 .

For every subexpression σ, we add the following constraints:

freq({tσ}) = 0.5, freq({fσ}) = 0.5,
freq({tσ, fσ}) = 0 .

In this way, we make sure that every transaction contains
either tσ, or fσ, but not both. We use the transactions
containing d to compensate the fact that we do not know
how many trues and falses we need for σ. For example,
for a ∨ ¬a, half of the transactions will contain {d, ta∨¬a},
and the other half contains {d, fa∨¬a}. Hence, even though
only half of the transactions contain ta∨¬a, all transactions
representing valid truth assignments contain ta∨¬a.

We still have to make sure that within the d-part of a satis-
fying database, the trues and falses are consistent with each
other. For example, a transaction representing a truth as-
signment cannot contain ta∨b, fa, and fb at the same time.
The consistency is enforced as follows: for every subexpres-
sion σ that is not an atom, depending on its form, we intro-
duce the following constraints:

σ ≡ σ1 ∨ σ2 : freq({d, tσ, fσ1 , fσ2}) = 0,
freq({d, fσ, tσ1}) = 0,
freq({d, fσ, tσ2}) = 0.

σ ≡ σ1 ∧ σ2 : freq({d, fσ, tσ1 , tσ2}) = 0,
freq({d, tσ, fσ1}) = 0,
freq({d, tσ, fσ2}) = 0.

σ ≡ ¬σ1 : freq({d, tσ, fσ1}) = 0,
freq({d, fσ, tσ1}) = 0.

Hence, for every subexpression σ, every transaction contains
either tσ or fσ, but not both. Every transaction T that
contains d, contains tσ if and only if VT (σ) is true.

TID Items

1 a, b, c
2 c
3 c
4 a
5 a

−→

TID Items

1 d ta tb tc f¬a t(¬a)∨b tb∧c
2 d fa fb tc t¬a t(¬a)∨b fb∧c
3 d fa fb tc t¬a t(¬a)∨b fb∧c
4 d ta fb fc f¬a f(¬a)∨b fb∧c
5 d ta fb fc f¬a f(¬a)∨b fb∧c
6 d fa fb fc t¬a f(¬a)∨b fb∧c
7 d ta tb fc f¬a f(¬a)∨b tb∧c
8 d ta tb fc f¬a f(¬a)∨b tb∧c
9 d fa tb tc t¬a t(¬a)∨b tb∧c
10 d fa tb tc t¬a t(¬a)∨b tb∧c

P =

{

freq(a) ∈ [0.4, 0.7], freq((¬a) ∨ b) = 0.6,
freq(b ∧ c) ∈ [0.2, 0.4], freq(c) = 0.6

}

.

Figure 1: A database satisfying P and a correspond-

ing database for F(P).

Furthermore, for all j = 1 . . .m, we introduce the constraint

{freq({d, tϕj}) ∈ [l/2, u/2]} .

That is, we only measure the frequency of the formulas ϕ
within the fraction of the database with d, that is, the valid
truth assignments. Since exactly half of the transactions
contain d, the bounds of the intervals have to be divided by
2.

We denote the resulting FREQSAT-instance by F(P). It is
now true that F(P) is satisfiable if and only if P is. Hence-
forth, we can reduce pSAT to FREQSAT. In the rest of the
paper we will often identify the itemset I with the conjunc-
tion

∧

i∈I i.

Lemma 2. P is satisfiable if and only if F(P) is satisfi-
able. Furthermore, ENTϕ(P) = [l, u] if and only if

ENT{d,tϕ}(F(P)) = [l/2, u/2] .

Example 1. Consider the following set of extended fre-
quency constraints P:

P =

{

freq(a) ∈ [0.4, 0.7], freq((¬a) ∨ b) = 0.6,
freq(b ∧ c) ∈ [0.2, 0.4], freq(c) = 0.6

}

.

F(P) is a set of frequency constraints over the items

{ta, fa, tb, fb, tc, fc, t¬a, f¬a,
t(¬a)∨b, f(¬a)∨b, tb∧c, fb∧c, d, d} .

The first type of constraints in F(P) make sure that tσ and
fσ are complements of each other:

freq({ta, fa}) = 0, freq({ta}) = 0.5, freq({fa}) = 0.5
freq({tb, fb}) = 0, freq({tb}) = 0.5, freq({fb}) = 0.5

. . .
freq({tb∧c, fb∧c}) = 0, freq({tb∧c}) = 0.5, freq({fb∧c}) = 0.5

The item d is in half of the transactions, and d is its com-
plement:

freq({d, d}) = 0, freq({d}) = 0.5, freq({d}) = 0.5 .



The second type of constraints makes sure that within the
transactions that contain d of a satisfying database, the trues
and falses are consistent:

freq({d, ta, t¬a}) = 0, freq({d, fa, f¬a}) = 0
freq({d, t¬a, f(¬a)∨b}) = 0, freq({d, tb, f(¬a)∨b}) = 0,
freq({d, f¬a, fb, t(¬a)∨b}) = 0
freq({d, fb, tb∧c}) = 0, freq({d, fc, tb∧c}) = 0,
freq({d, ta, tb, fb∧c}) = 0

Finally, the third type of constraints translates the extended
frequency constraints:

freq({d, ta}) ∈ [0.2, 0.35], freq({d, t(¬a)∨b}) = 0.3,
freq(d, tb∧c) ∈ [0.1, 0.2], freq({d, tc}) = 0.3

In Figure 1, two databases satisfying respectively P and F(P)
have been given.

The following theorem follows immediately from Lemma 2.

Theorem 1. FREQSAT ≡ pSAT and hence, FREQSAT isNP-
complete.

4.2 Association Rules
We can also simulate association rules in FREQSAT. An as-
sociation constraint is an expression conf(I → J) ∈ [l, u],
with I, J itemsets. A database D satisfies this association
constraint if and only if

l · freq(I,D) ≤ freq(I ∪ J,D) ≤ u · freq(I,D) .

4.2.1 Multiplication Lemma
We first introduce the following multiplication-lemma. This
lemma shows how we can construct a new item m that has
exactly d times the frequency of a given itemset I.

Lemma 3. Let C be a set of frequency constraints, I an
itemset, m an item not used in C, and d a positive integer.

There exists a set of constraints Md(I,m), polynomial in
the length of d, such that:

(1) C ∪ {freq(I) ∈ [0, 1/d]} is satisfiable if and only if C ∪
Md(I,m) is, and

(2) If D satisfies C ∪ Md(I,m), then freq({m},D) = d ·
freq(I,D).

Sketch We will give extended frequency constraints with
Boolean formulas that describe Md(I, J). Later on, us-
ing Lemma 2, these extended frequency constraints can be
translated into regular frequency constraints.

Introduce a new item smI . Let M1(I,m) = {freq(smI ∨ I) =
1/d, freq(smI ∨m) = 1/d, freq(smI ∧I) = 0, freq(smI ∧m) = 0}.
Hence, smI and I never occur together, and the sum of their
frequencies is 1/d. Thus, freq(I) = 1/d−freq(smI ). Similarly,
freq(m) = 1/d− freq(smI ), and hence, freq(I) = freq(m).

We now expressM2 by applyingM1 twice, and setting the
result item m equal to the union of the results of the two
M1. We can express that m is in exactly those transactions
that contain either m1 or m2 as follows:

freq((m ∧ ¬(m1 ∨m2)) ∨ ((m1 ∨m2) ∧ ¬m)) = 0

We denote this expression E(m,m1 ∨ m2) (E of “equal”.)
Let M2(I,m) be the following expression:

M1(I,m1) ∪M1(I,m2)
∪ {freq(m1 ∧m2) = 0, E(m,m1 ∨m2)} .

Hence, we can multiply frequencies by 2. By iteratively mul-
tiplying by two, we can multiply by 2k. Using the addition
technique with E(·, ·), we can add frequencies. Therefore,
we can multiply with an arbitrary number d. 2

Example 2. Let I be an itemset. The following expres-
sion M1({a}, x) forces freq({x}) to be equal to freq({a}),
assuming that freq({a}) is at most 1/d:

M1(I, x) = {freq(sxI ∨ I) = 1/d, freq(sxI ∨ x) = 1/d,

freq(sxI ∧ I) = 0, freq(sxI ∧ x) = 0}

In the rest of the construction we will often use M1 as a
copying mechanism. The parameter d, however, can be dif-
ferent for the different expressions. Therefore we denote the
value of d as a superscript to the notation; that is, we will
use Md

1(I, x). M2, M4, and M5 are now constructed as
follows:

M2(I, x2) = M1/5
1 (I, x1

1) ∪M
1/5
1 (I, x2

1),

∪{freq(x1
1 ∧ x

1
2) = 0, E(x2, x

1
1 ∨ x

2
1)}

M4(I, x4) = M2(I, x2) ∪M
2/5
1 ({x2}, x

1
2) ∪M

2/5
1 ({x2}, x

2
2)

∪{freq(x1
2 ∧ x

2
2) = 0, E(x4, x

1
2 ∨ x

2
2)}

M5(I, x5) = M1/5
1 (I, x1) ∪M4(I, x4)

∪{freq(x1 ∧ x4) = 0, E(x5, x1 ∨ x4)}

The following database satisfies

{freq({a}) = 0.5, freq({b}) = 0.5} ∪M5({a, b},m) .

TID Items

1 a, b x1 x1
1, x2 m

2 a sx1
{a,b} s

x1
1
{a,b}, s

x2
1
{a,b} s

x1
2
{x2}

, s
x2
2
{x2}

3 a x2
1, x2 x1

2, x4 m

4 a s
x1
2
{x2}

, s
x2
2
{x2}

5 a x1
2, x4 m

6 b x2
2, x4 m

7 b x2
2, x4 m

8 b
9 b
10

4.2.2 Reduction
Assume that besides frequency constraints C, also a set of
association constraints A has been given. We show that
there exists a FREQSAT-instance F(C ∪ A) that is equivalent
to C ∪ A.



Reduction from C ∪ A to F(C ∪ A) An association con-
straint conf(I → J) ∈ [l, u] holds if and only if

l · freq(I,D) ≤ freq(I ∪ J,D) ≤ u · freq(I,D) .

We concentrate on l · freq(I,D) ≤ freq(I ∪ J,D); the simu-
lation of the upper bound u is similar. Let l = α

β
. Then,

the lower bound holds if β · freq(I ∪ J) ≥ α · freq(I). We
will construct F(C ∪A) in such a way that when it is satisfi-
able by a database D, only a small part of it is the encoding
of a database that satisfies C ∪ A. We mark the transac-
tions that form the database for C ∪ A, by adding a new
item d to it. This gives the following constraints (we will
specify the exact value of N later): freq({d}) = 1/N , and
for all freq(Ij) ∈ [lj , uj ], the constraint freq(Ij ∪ {d}) ∈
[lj/N, uj/N ]. The transactions that do not contain d can be
considered as extra “workspace.”

We are now ready to encode β · freq(I ∪ J) ≥ α · freq(I).

We have two items mβ
I∪J and mα

I . Using the multiplication

Lemma 3, we set the frequency of mβ
I∪J to β times the fre-

quency of I ∪ J : Mβ(I ∪ J,m
β
I∪J) . Similarly, we set the

frequency of mα
I to α times the frequency of I. We can now

express that β · freq(I ∪J) ≥ α · freq(I) by requiring that ev-

ery mα
I occurs together with mβ

I∪J : freq(¬m
β
I∪J ∧m

α
I ) = 0 .

In this way we can translate the association constraints one
by one.

We have to choose N large enough, to make sure that there
is enough workspace to do the multiplications. Hence, N
should be at least α, where α is the greatest denominator
of a bound of an association constraint. We denote this
number NA. This gives us the set of extended frequency
constraints P(C ∪ A). Since we used arbitrary Boolean for-
mulas in the translation, we still need to apply the trans-
lation from extended frequency constraints to regular fre-
quency constraints. We call the resulting set of constraints
F(C ∪ A).

Theorem 2. C∪A is satisfiable if and only if F(C∪A) is
satisfiable. Furthermore, ENTI(C ∪ A) = [l, u] if and only
if ENTI(F(C ∪ A)) = [l/(2 ·NA), u/(2 ·NA)].

Example 3. Let C ∪ A be the following set:

{freq(a) = 3/4, freq({a, b}) = 1/2}∪{conf(a→ b) ∈ [1/2, 1]} .

NA equals 2. The following databases satisfy respectively
C ∪ A and P(C ∪ A):

TID Items

1 a
2 a, b
3 a, b
4 b

−→

TID Items

1 d, a m1
a, m2

a, m2
{a,b}

2 d, a, b m1
a, m2

a, m2
{a,b}

3 d, a, b m1
a, m2

a, m2
{a,b}

4 d, b m2
a, m2

{a,b}

5 m2
a

6 m2
a

7
8

Entailment problems. Consider the following three en-
tailment problems associated with FREQSAT:

(1) FREQENT(C, freq(I) ∈ [l, u])
Decide whether C |= freq(I) ∈ [l, u].
(2) T-FREQENT(C, freq(I) ∈ [l, u])
Decide whether C |=tight freq(I) ∈ [l, u].
(3) Func T-FREQENT(C, I)
Give [l, u] such that C |=tight freq(I) ∈ [l, u].

The complexity of these three problems is related to the
complexity of FREQSAT. Since we can use association rules,
the entailment problems are equivalent with the entailment
problems in the context of conditional events studied by
Lukasiewicz in [11]. Hence, we obtain the following theorem:

Theorem 3.
• FREQENT is co−NP-complete.
• T-FREQENT is DP-complete.

• Func T-FREQENT is FPNP-complete.

4.3 Axiomatization
We show that FREQSAT is not finitely axiomatizable.

We first give a lemma and theorem that provide a set of
axioms that are sound and complete in the special case
of sets of frequency constraints that contain an expression
freq(I) = fI for all sets I ⊆ I. The number of axioms de-
pends on the set I, and the axioms are only complete in
this very special case. In Theorem 4, we then show that in
general, no finite axiomatization of FREQSAT exists.

Lemma 4. Let f and g be two functions defined on the
subsets of a finite set I. The following two expressions are
equivalent:

(1) For all I ⊆ I, f(I) =
∑

I⊆K g(K);

(2) For all J ⊆ I, g(I) =
∑

I⊆K(−1)|K−I|f(K).

Theorem 4. Let for all I ⊆ I, fI be a rational number.
There exists a transaction database D such that for all I ⊆ I,
freq(I,D) = fI if and only if, for all I ⊆ I, the following
rule holds:

RI(I) σI(I) =
∑

I⊆K⊆I

(−1)|K−I|fK ≥ 0

Proof. If Let d be the least common multiplier of the
denominators of the sums σI(I). The database D consists
of the following transactions: for every set I ⊆ I, there
are d · σI(I) transactions (tid, I). Notice that all d · σI(I)
are positive integers. Thus, for all I ⊆ I, freq(I,D) =
∑

I⊆J σI(J). Using Lemma 4, we hence get freq(I,D) = fI .
Only If LetD be a database that fulfills the given frequencies.
Let φI denote the fraction of transactions (tid, J), with J =
I. Hence, freq(I,D) =

∑

I⊆K φK . Via Lemma 4, we get

that σI(I) equals φI . Hence, since all φI must be positive,
all σI(I) must be as well.



Theorem 5. Every axiomatization for FREQSAT that does
not include an axiom that involves the frequency of all non-
empty itemsets is incomplete. Therefore, FREQSAT is not
finitely axiomatizable.

Sketch Let n be an arbitrary number. We can construct
a FREQSAT problem C over the set I = {i1, . . . , in}, such
that (a) C is not satisfiable, but, (b) every strict subset
of C is satisfiable. Furthermore, C contains one expression
freq(I) = fI for every I ⊆ I.

From (a) and (b) it follows then that an axiomatization for
FREQSAT must contain at least one axiom that involves every
frequency constraint in the input. Indeed; suppose that the
axioms A1, A2, . . . , Am are sound and complete for FREQSAT,
but none of the axioms Ai involves all frequencies. Because
C is not satisfiable, there must be at least one axiom A that
is not satisfied by C. This is so because C contains an ex-
pression freq(I) = fI , for every subset I of I. Hence, every
expression freq(I) ∈ [l, u] entailed by C is either in contra-
diction with freq(I) = fi, or is less expressive. Therefore, if
it can be derived by the axioms that C is not satisfiable, then
this can be derived in one step. Suppose that this unsatisfied
axiom A does not involve itemset I, and c is the constraint
in C involving I. Then we have the following contradiction:
C \ {c} is satisfiable, but violates A.

We assume that n is even. (a similar system can be found
for n odd) Let C be
{

freq(I) =
2(n−|I|)

(2n)− 1

∣

∣

∣

∣

∣

∅ ⊂ I ⊂ I

}

⋃

{freq(I) = 0}

This set C fulfils the conditions (a) and (b). For all I 6= ∅,
we have:

σI(I) =
∑

I⊆K⊂I

(−1)|K−I|
2(n−|K|)

(2n)− 1

=
1

(2n)− 1
(1− (−1)n−|I|)

Hence, for all I 6= ∅, σII equals 0 if |I| is even, and 2 if |I|
is odd. For I = ∅, we get:

σI(∅) =
∑

K⊂I

(−1)|K|
2(n−|K|)

(2n)− 1
= −

1

(2n)− 1

Thus, C is not satisfiable. However, for every nonempty set
I, if we remove the expression with I from C, the result-
ing system C′ is satisfiable. Let I be odd: C′ ∪ {freq(I) =
2(n−|I|)−1

(2n)
} is satisfiable, if I 6= I is even, C′ ∪ {freq(I) =

2(n−|I|)+1
(2n)

} is satisfiable, and for I = I, C′∪{freq(I) = 1
(2n)

}

is satisfiable. These claims can easily be proved by checking
the changes in the sums σI(I) given above. 2

5. FREQSAT{LTRANS}
In this section we show that knowing an upper bound on
the length of the transactions does not affect the complex-
ity of the FREQSAT-problem. Moreover, for any subset C
of {ntrans, ndup}, FREQSAT({ltrans} ∪ C) is equivalent to
FREQSAT(C).

Lemma 5. Let J be a finite set of items, n = |J |, k is
an integer with 1 ≤ k ≤ n.

Let D be a transaction database that satisfies the following
collection Ck[J ] of frequency expressions:

∀j ∈ J : freq({j}) =

(

n− 1

k − 1

)

/

(

n

k

)

∀j1 6= j2 ∈ J : freq({j1, j2}) =

(

n− 2

k − 2

)

/

(

n

k

)

Then, for all transactions (tid, J) in D, the number of items
in J ∩ J equals k.

Sketch Let for all i = 0 . . . n,

δi =def |{(tid, I) ∈ D | |J ∩ I| = i}| .

It is clear that |D| =
∑n

i=1 δi . Let

Si =def

∑

I⊆J ,|I|=i

supp(I,D) .

Hence, since D satisfies Ck[J ],

S0 = |D|, S1 = |D| · n ·

(

n− 1

k − 1

)

/

(

n

k

)

S2 = |D|

(

n

2

)(

n− 2

k − 2

)

/

(

n

k

)

Thus, k(k − 1)S0 = (k − 1)S1 = 2S2.

Every transaction of length i has i subsets of length 1, and
i(i− 1)/2 subsets of length 2. So, it is also true that

S0 =
n
∑

i=1

δi, S1 =
n
∑

i=1

iδi

S2 =
n
∑

i=1

i(i− 1)δi/2

These last equalities in combination with

k(k − 1)S0 = (k − 1)S1 = 2S2 ,

lead to

0 = kS0 − S1 =
n
∑

i=1

(k − i)δi

0 = (k − 1)S1 − 2S2 =
n
∑

i=1

i(k − i)δi

From this it can be shown that for all i 6= k, δi = 0. 2

For every δ, the set of constraints Ck[J ] is satisfied by the
database Dk,δ that consists of δ transactions (tid, J), for
all J ⊆ J of length k. Hence, every database D with all
transactions having length exactly k, can be embedded in
the database Dk,|D|. The next definition and theorem are
based on this observation. Again an item d, not in J is used
to mark the transactions that identify the embedding of D.



Definition 1. Let C be the following set of frequency con-
straints:

C = {freq(I1) ∈ [l1, u1], . . . , freq(Im) ∈ [lm, um]} .

Let J =
⋃m
j=1 Ij, n = |J |, 1 ≤ k ≤ n, and let d be an item

not in J .

λk(C) =def

{

freq({d}) = 1
/

(

n

k

)}

∪ Ck[J ] ∪

m
⋃

j=1

{

freq({d} ∪ Ij) ∈

[

lj
/

(

n

k

)

, uj
/

(

n

k

)]}

Example 4. The following databases satisfy respectively
C and λ2(C) for

C = {freq({a, b}) = 0.5, freq({b, c}) ∈ [0.4, 0.6]} .

TID Items

1 a, b
2 b, c

−→

TID Items

1 a, b d
2 a, b
3 a, c
4 a, c
5 b, c d
6 b, c

Theorem 6. A set C of frequency constraints is satisfi-
able by a database with all transactions of constant length k
if and only if λk(C) is in FREQSAT.

Proof. Let C be

{freq(I1) ∈ [l1, u1], . . . , freq(Im) ∈ [lm, um]} ,

and let J be the set of items
⋃m
j=1 Ij .

If : Suppose that D satisfies λk(C). Let D
d be the following

database:

Dd =def {(tid, J) | (tid, J ∪ {d}) ∈ D}

The number of transactions in Dd is |D|/
(

n
k

)

, and the num-

ber of transactions in Dd that contain Ij lays between |D| ·
lj/
(

n
k

)

and |D| · uj/
(

n
k

)

. Hence, its frequency in Dd is be-

tween lj and uj . Therefore, Dd satisfies C. Furthermore,
because D satisfies Ck[J ], Lemma 5 states that every trans-
action in D contains exactly k items from J . Henceforth,
all transactions in Dd have length k (d is not in J ).

Only If : Suppose that D is a database with all transactions
of length k that satisfies C. We construct a database D′

with |D|
(

n
k

)

transactions that satisfy λk(C). For every sub-
set I of size k of J , there will be supp(I,D) transactions
(tid, I ∪ {d}), and |D| − supp(I,D) transactions (tid, I) in
D′. Thus, the absolute number of transactions containing
I ∪{d} in D′ is the same as the absolute number of transac-
tions containing I in D, but |D′| is

(

n
k

)

times larger than |D|.

Hence, the frequency of Ij∪{d} in D
′ equals freq(Ij ,D)/

(

n
k

)

.

The frequency of d is |D|/(|D| ·
(

n
k

)

) = 1/
(

n
k

)

. It also holds
that D′ satisfies Ck[J ]; the projection of D′ on J consists
of |D| copies of I, for every subset I of J of size k.

Corollary 1. For all C ⊆ {ntrans, ndup},
FREQSAT({ltrans} ∪ C) ≡ FREQSAT(C) .

Sketch Let C = {freq(Ij) ∈ [lj , uj ] | j = 1 . . .m} be a set of
frequency constraints, and let I =

⋃n
j=1 Ij , |I| = n.

FREQSAT({ltrans} ∪C) ≥ FREQSAT(C): the number of items
is an upper bound for transaction length, and hence,
(C, v1, . . . , vk) is in FREQSAT{c1, . . . , ck} if and only if
(C, n, v1, . . . , vk) is in FREQSAT{ltrans, c1, . . . , ck}.

FREQSAT({ltrans} ∪ C) ≤ FREQSAT(C): the proof of this
direction is based on Lemma 5. Let C be a set of fre-
quency constraints. Assume that C is satisfiable by a trans-
action database D, and D has a maximal transaction size of
n. Since Lemma 5 only holds for transaction databases of
length exactly lt, we need to add extra items to compensate
for transactions that are too short. When C includes ndup,
some care is required to avoid that the new items change
the number of duplicates. 2

6. FREQSAT{NTRANS}
In the last section we saw that knowing a maximal transac-
tion length does not add expressive power to FREQSAT. For
the number of transactions ntrans, the question whether
it adds to the complexity is open. We show that FREQSAT

reduces to FREQSAT{ntrans}, and that FREQSAT{ntrans} is
equivalent to Intersection Pattern Problem (IP) [8] w.r.t.
computational complexity. IP is the following problem: given
an n × n matrix C with integer entries, do there exist sets
S1, . . . , Sn such that |Si ∩ Sj | = C[i, j]? If such sets exist,
C is called an intersection pattern. In [8], it is claimed that
IP is NP-complete. However, the inclusion in NP has only
been proven for the case the entries in the matrix C are
bounded by a fixed constant [7]. For the general problem,
the inclusion of IP in NP is still open.

For the entailment, we show that, unlike for FREQSAT, the
set ENTn

I (C) = {freq(I,D) | D |= C, |D| ≤ n}, is no longer
an interval of the rational numbers. This is of course hardly
surprising, since the frequencies in a database with at most
n transactions can only be of the form p

q
, with 0 ≤ p ≤ n,

and 1 ≤ q ≤ n. Therefore, it would be more fair to ask
the following question: if p1

q
, p2
q
∈ ENTn

I (C), is it true that

for every p with p1 ≤ p ≤ p2, also
p
q
∈ ENTn

I (C)? We will
answer this question negatively. Moreover, given an arbi-
trary set R = {r1, . . . , rk} of rational numbers, we will show
that there exists a set of constraints C, an itemset I, and a
positive integer n, all having description size polynomial in
the size of R, such that ENTn

I (C) = R. This shows that the
properties of the FREQSAT-problem change fundamentally if
we restrict the number of transactions.

6.1 Relation with FREQSAT
Theorem 7. FREQSAT ≤ FREQSAT{ntrans}

Proof. Given a FREQSAT-problem C, by Lemma 1, there
exists an upper bound nC (with size polynomial in C), such
that if C is satisfiable, then C is satisfiable by a database
of size maximally nC. Hence, C is in FREQSAT if and only if
(C, nC) is in FREQSAT{ntrans}.



6.2 INTERSECTION PATTERN
We show that IP is equivalent to FREQSAT{ntrans}.

6.2.1 Reduction From IP to FREQSAT{ntrans}
It is clear that IP can be reduced to FREQSAT{ntrans}; if an
n× n matrix C is an intersection pattern, then there exists
a realization S1, . . . , Sn of C such that |

⋃n
i=1 Si| is at most

N(C) =
∑

1≤i≤n C[i, i]. Every instance of IP can now be re-

duced to the an instance of FREQSAT{ntrans} as follows. The
upper bound on the number of transactions is set to N(C).
We make sure that the number of transactions in a satisfying
database is exactly N(C) by adding the following constraint
(e is a new item): freq({e}) = 1/N(C). We furthermore
have items s1, . . . , sn. For every 1 ≤ i, j ≤ n, the constraint
freq({si, sj}) = C[i, j]/N(C) is added. If D is a satisfying
database, then the sets Si = {tid | (tid, J) ∈ D, si ∈ J}, for
i = 1 . . . n form a realization of C, and vice versa.

Example 5. Let C =

(

2 1
1 1

)

. The following sets

form a realization of C: S1 = {1, 2}, S2 = {1}. The cor-
responding FREQSAT{ntrans}-problem is (C, 3) with

C =

{

freq({e}) = 1/3, freq({s1}) = 2/3,
freq({s2}) = 1/3, freq({s1, s2}) = 1/3

}

.

The satisfying database of C that corresponds with the real-
ization S1 = {1, 2}, S2 = {1} is:

D =

TID Items

1 s1, s2
2 s1
3

6.2.2 Reduction From FREQSAT{ntrans} to IP

We give a non-deterministic polynomial many-one reduction
from FREQSAT{ntrans} to IP. Such a reduction shows that if
IP is in NP, then so is FREQSAT{ntrans}. We only illustrate
the reduction with an example.

Let (C, nt) be an instance of the FREQSAT{ntrans} problem.
The first step in the reduction is to reduce the cardinali-
ties of the sets in the input to 2. For example; a constraint
freq({a, b, c, d}) ∈ [0.1, 0.3] in C, must be replaced with a
number of constraints that only involve itemsets of cardinal-
ity at most 2. This would be easy if we knew the frequencies
of the prefixes of {a, b, c, d}. Indeed; suppose that we know
that freq({a}) = 0.5, freq({a, b}) = 0.3, freq({a, b, c}) = 0.2,
and freq({a, b, c, d}) = 0.1. Then we could introduce new
items i{a,b}, i{a,b,c}, and i{a,b,c,d}. These items replace re-
spectively {a, b}, {a, b, c}, and {a, b, c, d}. We enforce these
semantics as follows:

freq({i{a,b}}) = 0.3, freq({i{a,b}, a}) = 0.3,
freq({i{a,b}, b}) = 0.3, freq({a, b}) = 0.3

freq({i{a,b,c}}) = 0.2, freq({i{a,b,c}, i{a,b}}) = 0.2,
freq({i{a,b,c}, c}) = 0.2, freq({i{a,b}, c}) = 0.2

freq({i{a,b,c,d}}) = 0.1, freq({i{a,b,c,d}, i{a,b,c}}) = 0.1,
freq({i{a,b,c,d}, d}) = 0.1, freq({i{a,b,c}, d}) = 0.1

In this way, we can replace itemsets of high cardinality by a
chain of sets of cardinality at most 2. Of course, in general,
we do not know the exact frequencies of the prefixes of the

sets that are too long. Therefore, in the non-deterministic
polynomial many-one reduction, we start by guessing them.
If C has a solution, then there exists a correct guess.

In the second step, we have to encode the FREQSAT{ntrans}-
problem as a matrix C. We can at this point assume that
C only contains itemsets of cardinality at most 2, and that
the frequencies are given exactly (that is, no intervals). We
guess the total number of transactions n, under the con-
straint 0 ≤ n ≤ nt. In the matrix C, every row and column
corresponds to one item. The entry C[i, j] that corresponds
to the item i and the item j is filled as follows: if there is an
expression freq({i, j}) = f in C, then C[i, j] = f ·n. Else, the
entry C[i, j] is filled randomly by a number between 0 and
n. If in the end, one of the entries in C is not an integer, we
reject, since one of the guesses was wrong. In the other case,
an instance for IP has been constructed. There exists a se-
ries of guesses that leads to an intersection pattern C if and
only if the original problem (C, nt) is in FREQSAT{ntrans}.

6.3 Entailment
Lemma 2 can be extended to FREQSAT{ntrans}; that is, we
can extend FREQSAT{ntrans} to arbitrary Boolean formulas.
We assume that the maximal number of transactions is set
to nt. Consider the following set of expressions over the
items a, b, c:

freq({i}) = 1/nt freq({a, b}) = 0
freq({a, c}) = 0 freq({b, c}) = 0
freq(a ∨ c) = k/nt freq(b ∨ c) = k/nt

The first constraint makes sure that there are exactly nt
transactions. The next three constraints enforce that the
transactions with a, the ones with b, and the ones with c
are disjoint. Let A be the set of transactions with a, B the
ones with b, and C the ones with c. The last two constraints
express that |A∪C| = |B∪C| = k/nt. Let’s now consider the
set ENTnt

a∨b(C). Suppose that C contains l items, 0 ≤ l ≤ k.
Then, both A and B contain k − l transactions, and hence,
|A ∪ B| = 2(k − l). Therefore, ENTnt

a∨b(C) = { 2·l
nt
| l =

0 . . . k}. Thus, 0/nt, 2/nt ∈ ENTnt
a∨b(C), but 1/nt is not in

ENTnt
a∨b(C).

We now show that we can express every arbitrary set. Let
R = {r1, . . . , rk} be a set of positive rational numbers be-
tween 0 and 1. First, we equalize the denominators, that is,
let R = { p1

q
, . . . , pk

q
}. We set the number of transactions to

q. We make sure that the number of transactions is exactly
q, by adding the constraint freq({i}) = 1/q . ci and ni are
new items that are introduced for the construction. We con-
struct a set of constraints such that freq({ni}) is either 0 or
pi/q. The expression will be such that freq({ni}) = pi/q, if
and only if freq({ci}) = 0. Hence, ci acts as some sort of
switch; if ci is “on”, freq(ni) will be 0. We will make sure in
the construction that only one of the switches is “off.” Let
di be a new item. We first make a construction such that
freq(di) is 1/q if freq(ci) is 0 and vice versa:

freq(ci ∨ di) = 1/q, freq(ci ∧ di) = 0

Then we use the multiplication lemma to express that the
frequency of ni is pi times the frequency of di:

Mpi(di, ni) .



We set a target item t to n1∨ . . .∨nk: E(t, n1∨ . . .∨nk). We
still have to make sure that only one of the ni’s is non-zero.
Remember that ni was non-zero if and only if ci was zero.
Hence, we add

freq(c1 ∨ . . . ∨ ck) = (k − 1)/q

Thus, exactly k − 1 of the frequencies of c1, . . . , ck are 1/q,
and therefore, for exactly one i, freq(ci) = 0. Let E be the
set of constraints we just constructed. It is now true that
ENTq

t (E) = R.

Example 6. Consider the set R = {1/2, 1/3, 1/4}. First
we equalize the denominators:

R = {6/12, 4/12, 3/12} .

We set the upper bound on the number of transactions to
12. We make sure that there are exactly 12 transactions by
adding the constraint

freq({i}) = 1/12 .

New items c1, c2, c3, and d1, d2, d3 are introduced. We add
the following constraints to ensure that freq(dj) = 1/12 if
and only if freq(cj) = 0. Otherwise freq(dj) = 0.

freq(c1 ∨ d1) = 1/12, freq(c1 ∧ d1) = 0
freq(c2 ∨ d2) = 1/12, freq(c2 ∧ d2) = 0
freq(c3 ∨ d3) = 1/12, freq(c3 ∧ d3) = 0

Next, the items n1, n2, n3 are introduced that have a fre-
quency of respectively 3·freq(d1), 4·freq(d2), and 6·freq(d3):

M3(d1, n1),M4(d2, n2),M6(d3, n3)

We make sure that exactly 2 of c1, c2, c3 are non-zero:

freq(c1 ∨ c2 ∨ c3) = 2/12 .

Hence, exactly one of freq(cj) is 0, and thus, exactly one of
freq(dj) is 1/12, the other are 0. Therefore, either freq(n1) =
3/12, freq(n2) = 0, freq(n3) = 0, or freq(n1) = 0, freq(n2) =
4/12, freq(n3) = 0, or freq(n1) = 0, freq(n2) = 0, freq(n3) =
6/12.

Finally, the item t is set to equal n1 ∨ n2 ∨ n3:

E(t, n1 ∨ n2 ∨ n3)

The set of frequencies for t entailed by this set of constraints
equals {3/12, 4/12, 6/12}.

7. FREQSAT{NDUP}
In this section we study FREQSAT{ndup}. First we show that
we can always reduce a FREQSAT{ndup}-instance (C, nd) to
an instance (C′, 1). Hence, we show that the following prob-
lem: given C, decide whether (C, 1) is in FREQSAT{ndup},
is equivalent to FREQSAT{ndup}. We denote this problem
FREQSAT{ndup = 1}.

We show that FREQSAT{ntrans} reduces to FREQSAT{ndup}.
We also show that FREQSAT{ndup = 1} is PP-hard. Hence,
knowing the number of duplicates does add complexity to
the FREQSAT-problem.

7.1 FREQSAT{ndup=1}
Let C be a set of constraints, and nd be a positive integer.
Let the binary representation of nd be Bl . . . B0. We intro-
duce l+1 new items, b0, . . . , bl. We use the bj ’s to eliminate
duplicates. That is, nd+1 transactions with set of items I,
will be replaced by transactions with set of items: I, I∪{b0},
I ∪ {b1}, I ∪ {b0, b1}, . . . , I ∪ {bj | Bj = 1}. Let I ∪ B be
an itemset, I ∩B = ∅, and bj ∈ (B ∪ I)→ bj ∈ B. ν(I ∪B)
is the number associated with I; that is:

ν(I ∪B) =
∑

bj∈B

2j .

We have to make sure that the numbers of the transactions
are never higher than nd. This can be done as follows: for
all ` such that B` = 0, add the constraint freq({bj | Bj =
1, j > `}∪{b`}) = 0. Let Bnd be the set of these constraints.

∆nd(C) =def C ∪ Bnd−1 .

It is now true that (C, nt, nd) is in FREQSAT{ntrans, ndup},
if and only if (∆nd(C), nt) is in FREQSAT{ntrans, ndup = 1}.

Example 7. The binary representation of 10 is 1010.
Hence, B10 is the following set of constraints:

{freq({b3, b2}) = 0, freq({b3, b1, b0}) = 0} .

Every database that satisfies these constraints can have trans-
actions (tid, J) with J ∩ {b0, b1, b2, b3} equal to:

{}, {b0}, {b1}, {b0, b1}, {b2}, {b0, b2}, {b1, b2}
{b0, b1, b2}, {b3}, {b0, b3}, {b1, b3}

These transactions have respectively as associated numbers
0, . . . , 10. The constraints in B10 disallow transactions that
contain

{b3, b1, b0}, {b3, b2}, {b3, b2, b0}, {b3, b2, b1}, {b3, b2, b1, b0} .

These transactions have respectively as associated numbers
11, . . . , 15.

Therefore, adding the items b0, . . . , b3, and B10 makes it pos-
sible to reduce the number of duplicates with a factor 11.

Theorem 8.
FREQSAT{ndup} ≡ FREQSAT{ntrans, ndup}
FREQSAT{ntrans} ≤ FREQSAT{ndup}

Proof. FREQSAT{ndup} ≤ FREQSAT{ntrans, ndup}: With
n items and nd duplicates, one can have maximally nd · 2n

transactions. Hence, (C, nd) ∈ FREQSAT{ndup} if and only if
(C, nd · 2n, nd) ∈ FREQSAT{ntrans, ndup}.

FREQSAT{ndup = 1} ≥ FREQSAT{ntrans, ndup = 1}: Let
C = {freq(Ij) ∈ [lj , uj ], j = 1 . . .m}, I =

⋃

j=1m Ij . Let
bl . . . b0 be the binary representation of nt.
(C, nt) ∈ FREQSAT{ntrans, ndup = 1} if and only if

{freq({d} ∪ Ij) ∈ [lj/2, uj/2], j = 1 . . .m}
∪ {freq({d}) = 0.5, freq(d) = 0.5, freq(d, d) = 0}
∪ Bnt−1 ∪ {freq({bj , d}) = 0, j = 1 . . . l}
∪ {freq({i, d}) = 0 | i ∈ I}

is in FREQSAT{ndup = 1}. In this reduction, the simulating
database is split into two equally sized parts. The actual



database consists of the transactions containing d. In the
other part, every transaction contains d and some items of
{b0, . . . , bl}. Since Bnt−1 holds, and the number of dupli-
cates is 1, the d-part has maximally nt transactions. Be-
cause both parts have equal size, the actual database, that
is embedded as the d-part, contains maximally nt transac-
tions as well.

FREQSAT{ndup} ≥ FREQSAT{ntrans}:
(C, nt) is in FREQSAT{ntrans} if and only if (C, nt, nt) is in
FREQSAT{ntrans, ndup}.

Theorem 9. FREQSAT{ndup = 1} is in PSPACE

Proof. Let C = {freq(Ij) ∈ [lj , uj ], j = 1 . . .m}, and
let I =

⋃m
j=1 Ij . Every database D that satisfies C, and with

ndup(D) ≤ 1, has at most 2|I| transactions.

We show a non-deterministic procedure to decide the sat-
isfiability of C that uses at most polynomial space in the
length of C. In this way we show that FREQSAT{ndup = 1}
is in NPSPACE, and thus by Savitch’s Theorem [15, p.
149-150], also in PSPACE.

We “guess” a database D, transaction by transaction. We
avoid generating the same transaction twice, by requiring
that every new transaction comes lexicographically strictly
after the previous one. During database generation, we
maintain m counters for I1, . . . , Im, and 1 counter for |D|.
For every new transaction (tid, J), we increment the counter
|D|, and we do the checks Ij ⊆ J . For all j such that Ij ⊆ J ,

the counter for Ij is incremented. After at most 2|I| guesses,
we stop the database generation. We then check whether
Counter(Ij)/Counter(|D|) is within the interval [lj , uj ]. If
this is the case for all j = 1 . . .m, we accept, otherwise, we
reject.

7.2 FREQSAT{ndup} is PP-hard
Theorem 10. FREQSAT{ndup} is PP-hard.

Sketch We reduce MAJSAT to FREQSAT{ntrans, ndup = 1}.
Let ϕ be the given formula with variables x1, . . . , xn. We
construct a set of constraints C, such that (C, 2n+1) is in
FREQSAT{ntrans, ndup = 1} if and only if more than half of
the truth assignments to ϕ are accepting.

This reduction is very similar to the reduction of pSAT to
FREQSAT. In FREQSAT{ntrans, ndup = 1} we can further-
more make sure that every transactions represents a differ-
ent truth assignment, and that the total number of truth
assignments is 2n. Hence, the frequency of a certain item-
set {d, tσ} corresponds directly to the number of satisfying
truth assignments. The requirement that ϕ is true in more
than half of the truth assignments can thus be stated as
follows:

freq({tϕ, d}) ∈ [(2n−1 + 1)/2n+1, 1] ,

since 2n transactions represent valid truth assignments (the
ones that contain d), and hence “more than half” is the same
as “at least (2n−1 + 1).” 2

7.3 Entailment
Notice that the construction in the proof of the PP-hardness
of FREQSAT{ndup = 1}, has direct repercussions for the
study of the complexity of the following function problem,
named FuncFREQENT{ndup = 1}.
Problem FuncFREQENT{ndup = 1}:
Input: A pair (C, I), with C a finite set of expressions

C = {Ij ∈ [lj , uj ] | j = 1 . . .m}

Output: Let S = {freq(I,D) | D |= C, ndup(D) = 1}. If C
is satisfiable, the interval [min(S),max(S)].
Else, if C is not satisfiable, no. 2

Theorem 11. FuncFREQENT{ndup} is #P-hard.

Proof. Let ϕ be an arbitrary Boolean formula. Con-
struct C as in the proof of Theorem 10. Let now C ′ be the
constructed C minus the constraint freq({tϕ, d}) ∈ [(2n−1 +
1)/2n+1, 1]. Let [l, u] be output of the FuncFREQENT-
{ndup = 1}-problem (C, {d, tϕ}). Via a similar reasoning
as in the proof of Theorem 10, we get that l and u both
equal the number of satisfying assignments of ϕ, divided by
2n+1. Hence, 2n+1 · l is the solution of the #SAT-problem
with input ϕ.

8. APPLICATIONS
Privacy Data Mining can be a serious threat to the pri-
vacy. Therefore, methods are developed to adapt databases
in such a way that still meaningful data mining results can
be produced from it, but the privacy of the individual data
are not compromised [2]. It is, however, conceivable that the
mining is done by a trusted party. In that case, there is no
risk of disclosure based on the original data. Even though,
the results of the mining themselves can disclose more of
the original data than is desirable. The process of trying to
reconstruct parts of the original database from data mining
results is called inverse data mining [13]. The FREQSAT-
problem, its various variants and the entailment problems
can be situated in this context. The results of a frequent
set mining operation can be represented as an instance of
FREQSAT. Inverse data mining would then amount to deriv-
ing the frequencies of other itemsets, not in the result set. In
this context, the high complexities of the problems studied
in this paper are bad news: suppose that we want to pub-
lish some itemsets with their frequencies, but first we want
to assess how much these frequencies disclose of the original
dataset. This problem can be stated as one of the variants
of FREQSAT. The high complexity of the FREQSAT-problems
in this paper, however, show that there is little hope that
it is effectively possible to assess the degree of disclosure.
On the bright side, the high complexity means also that it
is potentially very hard to break the privacy. However, the
situation is different from that of, for example, public key
encryption. In inverse mining, partial information can be
derived with incomplete methods, whereas, in general, in
public key encryption, the code cannot be partially broken.
Hence, in inverse mining, the more computing power one
has, the more one can be derived. Therefore, unless one has
superior computing power over potentially malicious parties,
the results of mining cannot be guaranteed to be safe.



Condensed RepresentationsAnother application is mak-
ing condensed representations [12] of frequent itemsets. In
such condensed representations typically only non-redundant
information is stored. Entailment of frequencies as in the
FREQSAT-problem allows for derivation of frequencies. The
stronger the deduction mechanism, the more redundancy in
the set of frequencies can be found. The complexity re-
sults in this paper indicate that complete deduction in the
most general context is infeasible, and hence, incomplete,
yet tractable methods are more appropriate.

Frequent Itemset Mining Algorithms A third appli-
cation is improving the pruning of frequent itemset min-
ing algorithms. All frequent set mining algorithms use the
monotonicity rule to prune substantial parts of the search
space. This monotonicity rule can be seen as a very simple
example of deduction. Based on partial frequency informa-
tion of some itemsets, bounds on the frequencies of yet to
be counted sets are derived. If these bounds establish that
a certain set must be certainly frequent or certainly infre-
quent, the counting of it can be omitted in some cases. In
the context of FREQSAT, frequency constraints can be used to
model the frequency information gathered in previous scans
over the database. The deduction can then be used to iden-
tify sets that are certainly frequent/infrequent. In [3, 4, 6],
in some form, deduction rules are used in order to improve
pruning and speed up frequent set mining algorithms.

9. SUMMARY AND CONCLUSION
The complexity of the FREQSAT-problem and its variants was
studied. The following hierarchy illustrates the relations:

FREQSAT{ndup}

FREQSAT{ltrans}FREQSAT

FREQSAT{ltrans,ntrans,ndup}

IP

FREQSAT{ntrans,ndup}FREQSAT{ltrans,ndup}

FREQSAT{ltrans,ntrans}FREQSAT{ntrans}

NP

PP

PSPACE

FREQSAT was shown to be NP-complete. It was also shown
that the extensions to arbitrary formulas and to association
rules do not add extra expressive power to FREQSAT.

The complexity of FREQSAT{ntrans} is still an open ques-
tion. We proved that FREQSAT{ntrans} is NP-complete
if IP is in NP. We also illustrated that FREQSAT{ntrans}
has different properties than FREQSAT by showing that the
set ENTnt

I (C) can be any set of rational numbers, whereas
in FREQSAT, this set is always an interval of the rational
numbers. This can be an indication that the complexity of
FREQSAT{ntrans} is higher than the complexity of FREQSAT,
since the linear programming techniques that can be used
for FREQSAT and pSAT cannot be used for FREQSAT{ntrans}.

FREQSAT{ndup} is the most complex of the different variants
of FREQSAT. Its complexity is between PP and PSPACE.

The exact complexity is unknown. Assuming that NP 6=
PP, FREQSAT{ndup} is provably harder than FREQSAT. This
very high complexity is bad news from a privacy point of
view; it states that it is almost impossible to assess how
much some itemsets with their frequencies reveal from the
underlying database.

The main question left open in this paper is what the exact
complexities of FREQSAT{ntrans} and FREQSAT{ndup} are.
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