
Efficient AUC Optimization for Classification

Toon Calders1 and Szymon Jaroszewicz2

1 Eindhoven University of Technology, the Netherlands
2 National Institute of Telecommunications, Warsaw, Poland

Abstract. In this paper we show an efficient method for inducing clas-
sifiers that directly optimize the area under the ROC curve. Recently,
AUC gained importance in the classification community as a mean to
compare the performance of classifiers. Because most classification meth-
ods do not optimize this measure directly, several classification learning
methods are emerging that directly optimize the AUC. These methods,
however, require many costly computations of the AUC, and hence, do
not scale well to large datasets. In this paper, we develop a method to
increase the efficiency of computing AUC based on a polynomial approx-
imation of the AUC. As a proof of concept, the approximation is plugged
into the construction of a scalable linear classifier that directly optimizes
AUC using a gradient descent method. Experiments on real-life datasets
show a high accuracy and efficiency of the polynomial approximation.

1 Introduction

In binary classification, often, the performance of classifiers is measured using
the Area under the ROC Curve (AUC). Intuitively, the AUC of a classification
function f expresses the probability that a randomly selected positive example
gets a higher score by f than a randomly selected negative example. This measure
has proven to be highly useful for evaluating classifiers, especially when class
distributions are heavily skewed.

Recently, several new classifier training techniques have been developed that
directly optimize the AUC. The main problem these algorithms face is that com-
puting the AUC is a relatively costly operation: it requires sorting the database,
a cost of order n log(n) for a database of size n. Also, in contrast to, e.g., the
mean squared error, the AUC is not continuous on the training set, which makes
the optimization task even more challenging. Therefore, often the algorithms op-
timize a slight variant of the AUC, that is differentiable. We denote this variant
soft-AUC. The complexity of computing this soft-AUC, however, is even worse:
it is of order n2 for a database of size n. These high computational demands of
AUC and soft-AUC seriously impact the scalability of these methods to large
databases. Most of these algorithms therefore rely on sampling.

In this paper we present another option, namely the use of polynomial ap-
proximations for the AUC and the soft-AUC. The polynomial approximation
has the advantage that it can be computed in only one scan over the database,
and hence, it does not require resorting the database every time the AUC for a

new or updated classification function is needed. Furthermore, when the classifi-
cation function is only slightly changed, it is even possible to find the new AUC
without a database scan, based on a small summary of the database.

We show experimentally that the polynomial approximation is very accurate
and extremely efficient to compute; for soft-AUC, the traditional methods are
already outperformed starting from a couple of hundred of tuples. Furthermore,
the computation of the AUC can be plugged into all methods requiring repeated
computations of the AUC. As a proof of concept, the approximation is plugged
into a gradient descent method for training a linear classifier. It was implemented
and tested on real-life datasets. With the approximation technique, similar AUC
scores were reached as with existing techniques. The scalability and running
times of the proposed approximation technique, however, were vastly superior.

To summarize, the main contribution of this paper is the development of
an efficient procedure to approximate AUC and soft-AUC that scales very well
with the size of the dataset. This method makes it possible to scale-up existing
algorithms that optimize AUC directly.

2 Area Under the Curve and Classification

Consider the problem of assessing the quality of predictions for binary observa-
tions. Let C(o) denote the class of an observation o. The predicted quantity might
be a continuous quantity, e.g., a probability ranging from 0 to 1. This continuous
quantity can be translated into a binary prediction by setting a threshold; if the
predicted quantity is below the threshold, the result is a 0 prediction, otherwise,
1 is predicted. Depending on the threshold, there is a trade-off between precision
and recall; on the one hand, if the threshold is low, recall of the 1-class will be
high, but precision will be low, but on the other hand, if the threshold is high,
precision will be high, but recall will be low. In order to characterize the quality
of a predictor without fixing the threshold, area under the ROC curve (AUC)
or its soft version soft-AUC can be used [2].

AUC. The AUC of a predictor f is defined as

AUC(f) := P (f(x) < f(y)|C(x) = 0, C(y) = 1) .

Given a set of negative examples D0, and a set of positive examples D1, the
following Wilcoxon-Man-Whitney statistic [6], which we denote auc(f,D0 ∪ D1),
is an unbiased estimator of AUC (f):

auc(f,D0 ∪ D1) :=

∑

t0∈D0

∑

t1∈D1 1[f(t0) < f(t1)]

|D0| · |D1| ,

where 1[f(t0) < f(t1)] denotes the indicator function of f(t0) < f(t1); that is,
1[f(t0) < f(t1)] is 1 if f(t0) < f(t1) is true, and otherwise it is 0.

Given a dataset D = D0 ∪D1, the exact value of auc(f,D) can be computed
in time O(|D| log(|D|)) by sorting the tuples t in the database with respect to
the value of f(t) in ascending order, after which we scan the data and maintain
a count of 0-examples which have the value of f less than the current tuple.

Soft-AUC. For some classification algorithms, such as gradient descent, how-
ever, it is problematic that the statistic auc(f,D) is not continuous in f . Further-
more, another disadvantage of the AUC measure is that no weights are assigned
to the difference in scores; auc(f,D) fully takes into account a pair of a higher
scoring positive example with a lower scoring negative example, even if the mar-
gin is small. Both problems: the non-differentiability and the insensitivity to the
difference in scores between positive and negative examples, are solved by the
introduction of the following soft-AUC statistic (parameterized by β):

s aucβ(f,D0 ∪ D1) :=

∑

t0∈D0

∑

t1∈D1 sigmoidβ(f(t1)− f(t0))

|D0| · |D1| ,

where sigmoidβ(x) is the function 1
1+e−βx . This function approximates the step

function, but smoothes out the region around 0. For β →∞, sigmoidβ pointwise
converges to the step function. The computational cost of the soft-AUC, however,
is quadratic in the number of tuples. Similar measures have been introduced in
the literature to deal with the non-differentiability issue. We believe, however,
that soft-AUC has its own merits, and thus propose we it as a measure in its
own right.

Optimizing the AUC Directly. Recently, many new classification algorithms
have been proposed that directly optimize the AUC measure [7, 3, 1, 5, 10, 9]. In
these approaches, the AUC has to be computed repeatedly, as the classifier f
is being changed during the training process. Because for large datasets D, the
cost of O(|D| log(|D|)) for every computation of the AUC-measure can be too
high, it is often measured on only a small sample of the dataset.

In this paper, we propose another approach for optimizing the AUC directly.
We propose the use of polynomial approximations of AUC and soft-AUC. These
approximations have the advantage that they are more accurate than sampling,
they can be computed in linear time, and it is possible to cache a concise sum-
mary of the dataset that allows, for small changes in the classification function,
to compute the AUC without having to re-scan the dataset.

3 Polynomial Approximation of AUC and soft-AUC

The key observation is that the indicator function 1[f(t0) < f(t1)] (resp. sig-
moid) can be approximated by a polynomial. We only give the derivation for the
AUC, because the soft-AUC case is similar.

To approximate the indicator function, we actually approximate the func-
tion H(x) = 1[x > 0], which is the well-known Heaviside step-function. The
required indicator function is then H(f(t1) − f(t0)). In Figure 1, a polynomial
(Chebyshev) approximation of H(x) has been plotted.

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
step function
Chebyshev approx. degree 30

Fig. 1. Polynomial approximation of
the Heaviside function

0.5 0.6 0.7 0.8 0.9 1.0 1.1
exact AUC

10-6

10-5

10-4

10-3

10-2

10-1

100

a
b

s
o
lu

te
 e

rr
o
r

1
)1,0(N
2
)1,0(N
3
)1,0(N
4
)1,0(N
921

)1,0(N

Fig. 2. Accuracy of the polynomial ap-
proximations.

Let now
d

∑

k=0

ckxk be a polynomial approximation of H(x) of degree d. Then,

H(f(t1)− f(t0)) ≈
d

∑

k=0

ck(f(t1)− f(t0))
k =

d
∑

k=0

ck

k
∑

l=0

(

k

l

)

f(t1)
l(−f(t0))

k−l

=

d
∑

k=0

k
∑

l=0

αklf(t1)
lf(t0)

k−l

where αkl equals ck

(

k
l

)

(−1)k−l. This approximation of H(x) leads directly to the
following approximation for the auc. Let n0 denote |D0| and n1 denote |D1|.

n0n1auc(f,D) ≈
∑

t0∈D0

∑

t1∈D1

d
∑

k=0

k
∑

l=0

αklf(t1)
lf(t0)

k−l

=

d
∑

k=0

k
∑

l=0

αkl

∑

t1∈D1

f(t1)
l

∑

t0∈D0

f(t0)
k−l

 (1)

Notice that in (1), the quantities
∑

t1∈D1 f(t1)
l and

∑

t0∈D0 f(t0)
k−l for

1 ≤ l ≤ k ≤ d can all be computed in one scan, and then combined after-
wards. Following a similar convention as [8], we introduce the notation s(f,D) :=
∑

t∈D f(t). Following this convention, the approximation becomes:

auc(f,D) ≈

d
∑

k=0

k
∑

l=0

αkls(f
l,D1)s(fk−l,D0)

n0n1
(2)

Hence, we get an approximation of the auc in one linear scan over the database.

4 Training a Linear Classifier with the Approximation

In this section we show how the polynomial approximation of the auc can be
plugged into a gradient descent method for linear discriminative analysis that
optimizes the area under the ROC curve. Notice that the approximation can be
plugged into other classification inducers as well, in a very similar way.

Suppose a dataset D = D0 ∪D1 with m numerical attributes has been given.
We will represent the elements of D as vectors x = [x1 . . . xm]. The goal is now to
find a vector of weights w, such that the function fw(x) = w ·x maximizes AUC;
that is, auc(fw,D0 ∪ D1) is maximal w.r.t. w. To find such an optimal vector of
weights w, we use a gradient descent method. The gain of using the polynomial
approximation for the AUC will be three-fold: first, a costly sorting operation
in the computation of the AUC is avoided, second, based on the approximation
we can estimate the gradient, and third, we do not have to re-scan the dataset
every time the weights are adjusted by storing a small summary of the dataset.

Before presenting the complete algorithm, we explain its components.

Approximating the Gradient. To apply a gradient descent method, we need
to compute the gradient. The AUC of fw for a fixed set of examples D, however,
is not continuous in the weights w. We assume that there is an underlying
infinite distribution of which D is only a sample, and the gradient of the AUC is
approximated by applying the derivative of the polynomial approximation of the
AUC on the sample. Another way to interpret this approach is that we actually
optimize the accurate polynomial approximation, instead of the AUC.

The gradient of the AUC w.r.t. the weights w is
[

∂auc(f)
∂w1

, . . . , ∂auc(f)
∂wm

]

and

∂auc(f)/∂wi can be approximated by taking the partial derivatives of the poly-
nomial approximation in Equation 2:

n0n1
∂auc(f)

∂wi
≈

d
∑

k=0

k
∑

l=0

αkl

(

∂s(f l,D1)

∂wi
s(fk−l,D0) + s(f l,D1)

∂s(fk−l,D0)

∂wi

)

(3)
In the case of a linear classifier, f(x) = w · x =

∑m
i=1 wixi, we get

∂s(f l,D1)

∂wi
=

∑

x∈D1

∂f(x)l

∂wi
=

∑

x∈D1

lf(x)l−1xi = l · s(xif
l−1,D1) . (4)

Combining (3) and (4), we get the following approximation for the derivative:

n0n1
∂auc(f)

∂wi
≈

d
∑

k=0

k
∑

l=0

αkl

(

l · s(xif
l−1,D1) · s(fk−l,D0)

+ (k − l) · s(f l,D1) · s(xif
k−l−1,D0)

)

. (5)

Optimizing along the Gradient. We now show how to choose an optimal
value of the learning rate; i.e., optimize the weights along the gradient direction.

Update Rule. Suppose that the current weights are w, and we have approximated
the gradient g. When updating the weights w ← w + γg, the optimal value of
the learning rate γ needs to be determined. In our case, instead of minimizing
along the gradient, it is better to find the optimal angle α between old and new
weights in the plane spanned by the current weight vector and the gradient. The
reason for this is that the AUC does not depend on the length of w, only on
its direction. Hence, the weight vectors under consideration when selecting the
optimal α are given by cos(α)w + sin(α)g with α between 0 and 2π. We show
how we can avoid scanning the database to get an updated value for the AUC
every time we change α in order to find the optimal value.

Avoiding re-scanning. We can approximate n0n1auc(fcos(α)w+sin(α)g,D) as fol-

lows (the scaling factor 1√
2

is explained in the next paragraph)

d
∑

k=0

k
∑

l=0

αkl

(

∑

x∈D1

(

cos(α)√
2

w · x + sin(α)√
2

g · x
)l

)

·
(

∑

x∈D0

(

cos(α)√
2

w · x + sin(α)√
2

g · x
)k−l

)

=

d
∑

k=0

k
∑

l=0

αkl

(

∑l
m=0 βl,ms(fm

w f l−m
g ,D1)

)

·
(

∑k−l
m=0 βk−l,ms(fm

w fk−l−m
g ,D0)

)

where βl,m denotes
(

l
m

)

2−
l
2 cos(α)m sin(α)l−m. Thus, after we have computed

the gradient g, one scan over the database is needed to compute s(fm
w f l−m

g ,D1)

and s(fm
w f l−m

g ,D0), for all 1 ≤ l ≤ m ≤ d. Based on this summary, the AUC of
fcos(α)w+sin(α)g for all α can be computed without re-scanning the database.

Scaling of the Weights. One important problem we have to deal with in this
application, is that the approximation of the Heaviside function is only accurate
within the interval [−1, 1]. Outside of this interval, the approximation quickly
deteriorates, as can be seen in Figure 1. Therefore, we have to make sure that
for all points t1 ∈ D1 and t0 ∈ D0, the difference (f(t1)−f(t0)) is in the interval
[−1, 1]. We show how this requirement can be met by re-scaling the weights
vector w. Obviously, re-scaling the weight vector only changes the magnitude of
the scores of the classification function; the classifier and its AUC remain the
same.

We need to re-scale the weights w in such a way that for all x0 ∈ D0 and
x1 ∈ D1, the difference f(x1)−f(x0) = w·x1−w·x0 falls into the interval [−1, 1].
A straightforward solution is as follows. Let m1, M1, m0, M0 be the following
numbers:

m0 = min
x0∈D0

w · x0, M0 = max
x0∈D0

w · x0,

m1 = min
x1∈D1

w · x1, M1 = max
x1∈D1

w · x1.

From these numbers it can be derived that f(x1) − f(x0) always falls into the
interval [m1 −M0, M1 −m0]. Based on this interval, w can be re-scaled appro-

priately. In our implementation we have opted to re-scale w by dividing it by
max(M0 −m1, M1 −m0).

For the optimization along the gradient, we have to guarantee correct scaling
for every α. Let w′ denote 1√

2
(cos(α)w + sin(α)g). Observe now, for all x0 ∈

D0,x1 ∈ D1:

|fw′(x1)− fw′(x0)| =
1√
2
|(cos(α)(wx1 −wx0) + sin(α)(gx1 − gx0))|

≤ 1√
2
(cos(α) + sin(α)) ≤ 1√

2
(
√

2) = 1

Notice that in the derivation we implicitly assume that w and g are appropriately
scaled. Hence, when using update rule w ← 1√

2
(cos(α)w + sin(α)g), we are

guaranteed that the weights are scaled correctly.

Complete Algorithm. The complete algorithm is given in Algorithm 2. The
number of iterations is fixed to maxiter . In every iteration, first the gradient is
computed (lines 2 to 5). To this end, the database is scanned once to collect
the necessary supports (lines 3 and 4). These supports are then combined to
form the gradient (line 5). Once the gradient is found, the optimal angle α is
computed. Again, first the necessary supports are counted in one scan over the
database (lines 7 and 8). These supports suffice to find the optimal α without re-
scanning the database. In the implementation, finding the optimal α is done by
ranging over many different values of α evenly spread over [0, 2π], and selecting
the one that gives the highest AUC. The AUC scores for the different values of
α can be computed without re-scanning the database. This optimization of α is
performed by Algorithm 1 (line 4). The method is quite crude, but any other
linear optimizer could be used instead. Once the optimal α has been found, the
weights are updated (line 11), and the next iteration is entered.

It seems that our weight rescaling method requires an extra database scan. In
our implementation, however, we combine it with support counting. Rescaling is
done (if needed) continuously as records are read (this happens in lines 3,4 and
7,8). Thus, only two database scans per gradient descent iteration are required.

Soft-AUC. As we discussed earlier, the AUC does not take into account how
close the points are to the decision boundary. Whether a pair of points (x0,x1)
contributes to the AUC solely depends on f(x1) being larger than f(x0), not on
the magnitude of this difference. It would be more natural if small differences
were counted less than large differences, like it is also the case in, e.g., mean
squared error. This observation is the main motivation for the soft-AUC measure:

s aucβ(f,D0 ∪ D1) :=

∑

t0∈D0

∑

t1∈D1 sigmoidβ(f(t1)− f(t0))

|D0| · |D1| .

For optimizing soft-AUC, our method works perfectly well; having a good
polynomial approximation is even easier, as the main difficulty, the steep step

Algorithm 1 Optimize α

Input: s(fm

w f l−m

g ,D1), and s(fm

w f l−m

g ,D0) for all 1 ≤ l ≤ m ≤ d

Output: Optimal angle ang

1: opt := 0; ang := 0;
2: for all α := 0 . . . 2π step .01 do

3: Approx. AUC of f 1√
2
(cos(α)w+sin αg), using Equation (6).

4: if AUC > opt then

5: opt :=AUC;
6: ang := α;
7: return ang

Algorithm 2 Learning a linear classifier

Input: Database D = D0 ∪D1 with m attributes, initial weights w, maximal number
of iterations maxiter .

Output: Weights w, reached via a gradient descent method

1: for iter := 1 . . .maxiter do

2: {Approximate gradient}
3: Count s(xif

l−1,D1), s(f l,D1) for l = 1 . . . d, i = 1 . . . m in one scan over D1.
4: Count s(xif

l−1,D0), s(f l,D0) for l = 1 . . . d, i = 1 . . . m in one scan over D0.
5: Approx. gradient g based on the supports counted in steps 1 and 2, using Equa-

tion (5).
6: {Approximate AUC of f 1√

2
(cos(α)w+sin(α)g)}

7: Count s(fm

w f l−m

g ,D1), for all 1 ≤ l ≤ m ≤ d in one scan over D1.
8: Count s(fm

w f l−m

g ,D0), for all 1 ≤ l ≤ m ≤ d in one scan over D0.
9: {Update weights w}

10: Find optimal α, with Algorithm 1
11: w := 1

√

2
cos(α)w + sin(α)g

12: return w

in the Heaviside, is avoided. There are, however, still some problems we have to
take into account. First of all, re-scaling the weights no longer leaves the objec-
tive function unchanged. Therefore, the optimization problem actually becomes:
find optimal weights w, with ‖w‖ = 1, such that s aucβ(fw,D) is maximal. This
requirement contradicts the scaling needed to keep the approximation accurate.
Therefore, the re-scaling is kept, but, every time we need the approximations, the
polynomial coefficients are recomputed, such that not s aucβ(fw,D) is approxi-
mated, but s aucβ/‖w‖(fw,D). Put otherwise, instead of requiring that ‖w‖ = 1,
and s aucβ(fw,D) is optimal, we equivalently require that s aucβ/‖w‖(fw,D) is
optimal. We do not go into detail here due to lack of space.

5 Experimental evaluation

We implemented the linear approximation of AUC and soft-AUC, and a linear
classifier inducer based on these approximations. For both the approximation in

0.0 0.5 1.0 1.5 2.0
number of data points x1e+7

0

10

20

30

40

50

60

ti
m

e
 [

s
]

approx. AUC
exact. AUC

0.0 0.2 0.4 0.6 0.8 1.0
number of data points x1e+5

0

200

400

600

800

1000

ti
m

e
 [

s
]

approx. soft AUC
exact. soft AUC

Fig. 3. Performance of the polynomial approximations.

isolation and the classifier inducer we test both the accuracy and the running
times. For the polynomial approximations used in the experiments, a degree of
30 was chosen as a compromise. Higher values for the degree did not give a
significant increase in accuracy, while decreasing performance. Numerical sta-
bility problems do become visible for high degrees, but for the degree of 30 no
such problems occurred on any of the datasets used. It should be noted, how-
ever, that the optimal degree highly depends on the numerical precision of the
computations and even on the architecture of the computer used.

Datasets. The characteristics of the datasets used for testing are given below. In
case of the forest cover dataset only the two most frequent classes were kept. We
tried two versions of the forest cover data, one with only 10 numerical attributes
kept, and another with all attributes. This allowed us to see how binary attributes
influence accuracy.

dataset records attrs

sonar 208 60
KDD Cup 04 physics 50000 78
forest cover 10 numeric attrs 495141 10
forest cover all attrs 495141 54
KDD Cup 98 all attrs 95412 464

All experiments in this section have been performed with 10 fold cross-validation.

Performance of the Polynomial Approximation. To test the accuracy of
the polynomial approximation, we used synthetically generated data. The data
was generated by randomly drawing positive examples with f -values with mean
m1 and standard deviation 1 and negative examples with mean m2 and stan-
dard deviation 1 following a normal distribution, and raising this number to the
power p. By varying the difference m1−m2, different AUC values are obtained.
The higher the value of p becomes, the smaller the average distances between
the scores become, making the approximation difficult since many values will
fall in the poorly approximated region of the Heaviside function. As can be seen

sonar

physics
forest 10

forest all

KDD Cup 98
0.0

0.2

0.4

0.6

0.8

1.0

A
U

C
 o

n
 t

ra
in

in
g

 s
e
t

Poly approx.
LDA
SVM_perf c=0.1
SVM_perf c=1
SVM_perf c=10

sonar

physics
forest 10

forest all

KDD Cup 98
10-1

100

101

102

103

104

c
o
m

p
u

ta
ti

o
n

 t
im

e
 [

s
]

Poly approx.
LDA
SVM_perf c=0.1
SVM_perf c=1
SVM_perf c=10

Fig. 4. AUC computation time for linear models built using polynomial approximation,
Linear Discriminant Analysis and SVM perf. Data on KDD Cup 98 is missing for
SVM perf due to excessive computation time.

in Figure 2, the accuracy of the approximation is very high in general, but dete-
riorates slightly when there are only small differences between the scores (high
powers p). In the graphs in Figure 3 the running times for the approximations
of the AUC and soft-AUC are given, showing significant performance gains.

Performance of the Linear Classifier. We begin by examining the perfor-
mance and accuracy of training an AUC-maximizing linear classifier based on
polynomial approximations. We used the maximum of 30 iterations, and the
polynomial degree was set to 30. Figure 4 shows the results of comparing our
approach with Linear Discriminant Analysis and SVM perf, a version of Sup-
port Vector Machine minimizing AUC directly [9]. Since the SVM’s performance
depends on a parameter c we used three different values of this parameter.

Our approach achieves better values of AUC than the SVM and is often more
than an order of magnitude faster. We were, e.g., not able to run the SVM on the
KDD Cup’98 dataset. This is probably due to large number of attributes in this
dataset. The main step of our method, the linear search, is totally independent
of the number of attributes. Our approach minimized AUC directly without any
performance problems. Forest cover gives worse results when all attributes are
present. This is due to binary attributes which cause the occurrence of values of
f very close to each other, thus causing significantly worse approximation.

In order to check the usefulness of direct AUC minimization we also compared
it with Linear Discriminant Analysis, a standard linear classification technique.
Due to the efficiency of our approach, we were able to perform direct AUC
optimization on large datasets and thus obtain meaningful comparison. As it
turns out, minimizing AUC directly does not give any visible improvement over
classifiers built using LDA. This seems to confirm results presented in [4].

In [7] a method of fast AUC computation based on sampling is presented.
We modified our algorithm to compute AUC directly on a small sample at each
minimization step to obtain a similar approach. Figure 5 shows the results. It

103 104

sample size

0.72

0.74

0.76

0.78

0.80

0.82

A
U

C
 o

n
 t

e
s
t

s
e
t

KDD Cup 04 Physics
Forest (10 numer. attrs)
Forest (all attrs)

103 104

sample size

0

100

200

300

400

500

600

c
o
m

p
u

ta
ti

o
n

 t
im

e
 [

s
]

KDD Cup 04 Physics
Forest (10 numer. attrs)
Forest (all attrs)

Fig. 5. Test set AUC and computation time for linear models built using exact AUC
computation on samples. Horizontal lines denote test set AUC and computation time
for respective models built using polynomial approximation.

100 200 500 1000 2000 5000
sample size

0.60

0.65

0.70

0.75

0.80

s
o
ft

-A
U

C
 o

n
 t

e
s
t

s
e
t

1=β
2=β
01=β

100 200 500 1000 2000 5000
sample size

101

102

103

104

c
o
m

p
u

ta
ti

o
n

 t
im

e
 [

s
]

1=β
2=β
01=β

Fig. 6. Sampling vs. polynomial approximation for minimizing soft-AUC on KDD Cup
04 Physics datasets. Horizontal lines denote test set soft-AUC and computation time
for respective models built using polynomial approximation.

can be seen that polynomial approximations achieve higher accuracy in shorter
time.

We now present some experiments on minimizing soft-AUC. We compared
the method with a sampling based version. Figure 6 has the results. Again, it can
be seen that our polynomial approximation gives better results than sampling.
The experiment was extremely time consuming, since computing the exact soft-
AUC for the final classifier took hours (quadratic time in number of records).
At the same time, building the classifier using our approach took just seconds.

Summary of Experimental Results. For the linear approximation, we tested
the accuracy and the performance in comparison with the exact versions. The
presented experiments support our claim that the approximation is very accu-
rate and that there is a large performance gain in running time. For the linear
classifier inducer, we compared both the performance w.r.t. running time and

w.r.t. predictive power of the learned model, in comparison with sampling, Lin-
ear Discriminative Analysis (a linear model learner optimizing accuracy), and
SVM perf [9] (a version of Support Vector Machine learner, minimizing the AUC
directly). The experiments show that the running times of our method are com-
parable to LDA, which is significantly lower than the time required by SVM perf.
On the other hand, sampling is not efficient as it requires too many examples to
reach the same accuracy as our approximation. Hence, both in running time and
predictive performance, our method is always comparable to the winner, hence
combining the advantages of the different methods.

6 Summary and Conclusion

A polynomial approximation of the Area Under the ROC Curve, computable
in linear time, has been presented, and was applied to inducing a classifier that
optimizes AUC directly. We also proposed a soft-AUC measure which does not
give simple 0/1 scores to points close to the decision border.

Experimental evaluation has shown that the method is efficient and accurate
compared to other methods for approximating the AUC. As a proof of concept,
the method was plugged into the training of a linear classifier by optimizing
the AUC or soft-AUC directly. With the approximation technique, similar AUC
scores were reached as with existing techniques. The scalability and running
times of the proposed approximation technique, however, are vastly superior.

Future work will include extending the approach to nonlinear classifiers.

References

1. K. Ataman, W. N. Street, and Y. Zhang. Learning to rank by maximizing auc with
linear programming. In IEEE International Joint Conference on Neural Networks
(IJCNN 2006), pages 123–129, 2006.

2. A.P. Bradley. Use of the area under the ROC curve in the evaluation of machine
learning algorithms. Pattern Recognition, 30(7):1145–1159, 1997.

3. U. Brefeld and T. Scheffer. AUC Maximizing Support Vector Learning. In Proc.
ICML workshop on ROC Analysis in Machine Learning, 2005.

4. C. Cortes and M. Mohri. Auc optimization vs. error rate minimization. In Advances
in Neural Information Processing Systems 16. MIT Press, 2004.

5. C. Ferri, P. Flach, and J. Hernandez-Orallo. Learning decision trees using the area
under the ROC curve. In ICML, pages 139–146, 2002.

6. J.A. Hanley and B.J. McNeil. The meaning and use of the area under a receiver
operating characteristic (ROC) curve. Radiology, 143(1):29–36, 1982.

7. A. Herschtal and B. Raskutti. Optimising area under the roc curve using gradient
descent. In ICML, pages 49–56. ACM Press, 2004.

8. S. Jaroszewicz. Polynomial association rules with applications to logistic regression.
In KDD, 2006.

9. T. Joachims. A support vector method for multivariate performance measures. In
ICML, 2005.

10. A. Rakotomamonjy. Optimizing Area Under Roc Curve with SVMs. In Workshop
on ROC Analysis in Artificial Intelligence, 2004.

