Integrating Pattern Mining
in Relational Databases

Toon Calders, Bart Goethals, and Adriana Prado

University of Antwerp, Belgium
{toon.calders, bart.goethals, adriana.prado}@ua.ac.be

Abstract. Almost a decade ago, Imielinski and Mannila introduced
the notion of Inductive Databases to manage KDD applications just as
DBMSs successfully manage business applications. The goal is to follow
one of the key DBMS paradigms: building optimizing compilers for ad
hoc queries. During the past decade, several researchers proposed exten-
sions to the popular relational query language, SQL, in order to express
such mining queries. In this paper, we propose a completely different and
new approach, which extends the DBMS itself, not the query language,
and integrates the mining algorithms into the database query optimizer.
To this end, we introduce virtual mining views, which can be queried
as if they were traditional relational tables (or views). Every time the
database system accesses one of these virtual mining views, a mining al-
gorithm is triggered to materialize all tuples needed to answer the query.
We show how this can be done effectively for the popular association rule
and frequent set mining problems.

1 Introduction

Almost a decade ago, Imielinski and Mannila [9] introduced the concept of an
Inductive Database, in which a Knowledge and Data Discovery Management Sys-
tem (KDDMS) manages KDD applications just as DBMSs successfully manage
business applications. Generally speaking, besides allowing the user to query
the data, the KDDMS should also give users the ability to query patterns and
models extracted from these data. In this context, several researchers proposed
extensions to the popular relational query language, SQL, as a natural way to
express such mining queries [8,10, 11].

In our work, we aim at extending the DBMS itself, not the query language.
That is, we propose an approach in which the user can query the collection of all
possible patterns as if these are stored in relational tables. The main challenge
is how this storage can be implemented effectively. After all, the amount of all
possible patterns can be extremely large, and impractical to store. For exam-
ple, in the concrete case of itemsets, an exponential number of itemsets would
need to be stored. To resolve this problem, we propose to keep these pattern
tables virtual. That is, as far as the user is concerned, all possible patterns are
stored, but on the physical layer, no such complete tables exist. Instead, when-
ever the user queries such a pattern table, or virtual mining view, an efficient

data mining algorithm is triggered by the DBMS, which materializes at least
those tuples needed to answer the query. Afterwards, the query can be executed
as if the patterns had been there before. Of course, this assumes the user poses
certain constraints in his query, asking for only a subset of all possible patterns,
which should then be detected and exploited by the data mining algorithm. As
a first step towards this goal, we propose such a constraint extraction procedure
starting from a collection of simple constraints.

Notice that the user can now query mining results by using a standard re-
lational query language, such as SQL. Furthermore, the user does not need to
deal with the mining algorithms themselves as these are transparently triggered
by the DBMS. We show how this approach can be implemented for the popular
association rule and frequent set mining problems.

2 Related Work

The idea to integrate data mining into databases has been addressed in a number
of works [8-11]. Some of these works focus on extensions of SQL, as a natural
way to give the user the ability to mine the data. For example, the query lan-
guage DMQL was proposed by Han et. al. for mining relational databases [8].
DMQL adopts an SQL-like syntax for mining different kinds of rules such as
classification rules and association rules. Another example, is the MINE RULE
operator proposed by Meo et. al. [11], designed as an extension of the SQL
language. This operator was proposed specifically for association rule mining
discovery. The MSQL language [10], proposed by Imielinski and Virmani, is also
focussed on association rules. It extends SQL with the operators GetRules and
SelectRules that can, respectively, generate and query a set of association rules.
Other examples of query languages for data mining are LDL'T [13] and ATLaS
[14] of Wang and Zaniolo, which are extensions of LDL and SQL, respectively.
A more theoretical study of a data mining query language is the data mining
algebra proposed by Calders et. al. [3].

3 Virtual Mining Views

An association rule, defined over a set of items Z,is an implication of the form
X = Y, where X, Y C Z,and XNY = (). We say that X is the antecedent and Y’
the consequent of the rule [2]. Let D be a collection of transactions, where each
transaction is a subset of Z. Then, the rule X = Y holds in D with support s,
if s transactions in D contain X UY, and confidence c if ¢% of the transactions
in D that contain X also contain Y.

The transaction database D can be stored as a binary relational data table.
For each transaction, there is a set of tuples of the form (tid, item), where tid is
the transaction identifier and item is an item in that transaction. Note that this
table can also be implemented as a database view on the real data, as this is
typically not represented in such a binary relation. Then, the association rules,

generated from the mining of D, can be represented in the same database where
D is stored, by using the following schema.

1. Sets(sid, item): This table represents all itemsets. A unique identifier sid is
associated to each itemset and, item is an item in that itemset.

2. Supports(sid, supp) : This table represents the supports of the itemsets in
the Sets table. For each itemset, there is a tuple where sid is the identifier
of the itemset and supp the support.

3. Rules(rid, sida, side, sid, conf): This table represents all association rules.
For each rule X = Y, there is a tuple with an association rule identifier rid,
the antecedent identifier sida, the consequent identifier sidc, the set identifier
sid of the complete itemset (X UY), and conf the confidence.

Note that the choice of the schema for representing itemsets and association
rules also implicitly determines the complexity of the queries a user needs to
write. For example, one of the three set identifiers for an association rule, sid,
sida or side, is redundant, as it can be determined from the other two. Never-
theless, it would also imply the user would have to write much more complicated
queries. Essentially, only the data table D and the Sets table are necessary in
order to be able to select itemsets or association rules in a single query. In-
deed, without the Sets table, this is impossible because such a query explicitly
generates the powerset of Z, which is well known to be impossible in SQL [1].

It is of course also still possible to add more attributes to these tables in
which, for example, also other interestingness measures could be stored.

The main goal of the proposed pattern tables is to give the user the ability
to query data mining results in the same way as traditional relational tables
are queried. As already explained, however, it is intractable to store all 27
itemsets or 37| association rules. On the other hand, the entire set of patterns
does not always need to be stored, but only the patterns that satisfy the con-
straints within the user’s query (e.g., minimum support, minimum confidence,
etc.). Therefore, in our proposal, the pattern tables are actually empty, and af-
ter the user has posed his query, the necessary patterns are materialized by the
mining algorithm, immediately before the DBMS answers the query. Of course,
this means that the DBMS should be able to detect the constraints in the given
query. In our approach, we extract such constraints from a relational algebra
expression equivalent to the user’s query. Note that every SQL-query can easily
be transformed into an equivalent relational algebra expression [7]. Such a rela-
tional algebra expression has the advantage of being procedural as compared to
SQL, which is declarative, making the constraint extraction easier.

4 Extracting Constraints from Queries

For reasons of simplicity, we study a restricted class of constraints: for association
rules we have minimal and maximal support, minimal and maximal confidence,
plus the constraints that a certain item must be in the antecedent, in the conse-
quent, in the antecedent or the consequent, and Boolean combinations of these.

The stricter the constraints we can extract, the more efficient query evalu-
ation will become, because the number of tuples that needs to be materialized
decreases when the extracted constraint is stricter. Note, however, that extract-
ing the best possible constraint, i.e. the most strict, is theoretically impossible,
even in the restricted case considered here. Indeed; suppose, for the sake of
contradiction, that an algorithm exists that always extracts the best possible
constraints. Then, this algorithm allows us to decide whether an SQL-query will
always return an empty answer as follows: given a query ¢, run the assumed
algorithm on the following query ¢': select sid from Sets where not exists
(¢); Obviously, on the one hand, if ¢ always returns the empty answer, ¢’ will
never return any sid. In that case, the most strict constraint is “false”; i.e., no
itemsets nor rules should be mined. On the other hand, if ¢ is not empty, ¢’
will produce the sid of every itemset, and hence, the constraint must be “true”.
Therefore, ¢ is non-empty if and only if the assumed algorithm returns the con-
straint “true”. Deciding non-emptiness of SQL-queries, however, is well-known
to be undecidable [1]. Therefore, the algorithm proposed in this section is neces-
sarily incomplete. For simple queries, however, it will find strict constraints, as
will be illustrated with some examples.

As already explained earlier, the proposed constraint extraction algorithm
does not work directly on the SQL-query, but on an equivalent relational algebra
expression, which can be easily generated by existing algorithms.

Relational Algebra A relational algebra expression is a sequence of set op-
erations on the relations, resulting in the answer of the query. Consider, for
example, the SQL-query shown in Fig. 1. The query asks for the rules and their
confidences, that have the item apple in the antecedent or consequent of the rule,
support of at least 40 and confidence of at least 80%. An equivalent relational
algebra expression for this SQL-query is

T R.rid,R.conf OS3.sid=R.sid (Usl.sid:SQ.sid (Usl.item:apple Sets)

X (USQ‘supp24O Supports)) X (JR.co7zf280% RUICS)

In this expression, or conf>g0% Rules expresses that we only select those
tuples from the relation Rules that satisfy the constraint R.conf > 80%, X con-
structs the Cartesian product of two relations, i.e., for every tuple of the first
relation, and every tuple of the second relation, a new tuple that is the concate-
nation of the two tuples is in the result relation of X. TR ria,R.conf Produces a
new relation that has only the attributes R.rid and R.conf.

Notice that this expression can also be represented by its syntax tree, as is
illustrated in Fig. 1. For the sake of simplicity, we will continue working with
such expression trees instead of the relational algebra expressions themselves.

Algorithm Given a query ¢ as input, first, an equivalent tree of relational alge-
bra is constructed. As every leaf node in this tree represents a table or a virtual
mining view, the goal of the algorithm is to find which tuples should be present in

(OF R.rid, R.conf

() O3 sid=R.sid

@ >
select R.rid, R.conf
from Sets S , Supports S, Rules R (h) GS].xid: S .sid
where S sid = S .sid
and Sz.sid = Rusid (g) ><

and S .item ='apple'
@o Sl.item = apple (e) GSZ.Supp>ﬁ‘0 Ho R.conf>=80%

and R.conf >=80% (a) Sets S, (b) Supports S, (c) Rules R

and S supp >=40

Fig. 1. An example query and its corresponding expression tree of relational algebra.

those nodes representing a virtual mining view, in order to answer to the query.
Thus, actually, the algorithm determines, for each of the aforementioned nodes,
a constraint. For example, in Fig. 1, there are three leaf nodes that represent
virtual mining views: one with the Sets view, one with the Supports view, and
one with the Rules view. The goal of the algorithm is then to identify that, in
order to answer the query, it suffices to have in (a) and (b) only tuples that come
from itemsets having the item apple and with support of at least 40, and in (c)
only tuples that come from association rules with confidence of at least 80% and
generated from the same collection of itemsets present in (a) and (b). We denote
the subset of tuples of a virtual mining view V' that come from itemsets that
satisfy ¢ by V[¢]. E.g., the subset of Sets needed to be materialized for node (a)
can be denoted Sets[apple A supp > 40].

Notice that because leaf nodes always correspond to the tables or virtual
mining views in the from-clause of the query, the algorithm finds, for every virtual
mining view in the from-clause, a constraint. If one virtual mining view is used
multiple times, multiple constraints will be extracted. This is not a problem, as
we can easily combine these different constraints by taking the union.

In this context, the procedure to extract the constraints on the virtual mining
views is as follows. Starting from the leaves, going bottom-up, the algorithm
determines for every node n in the expression tree which tuples should be in
the virtual mining views in order to answer the subquery associated with that
node, that is, the query represented by the subtree rooted at n. To answer the
subqueries associated with the leaf nodes themselves, obviously, all tuples should
be in, since the subquery is essentially asking for all tuples in the virtual mining
view. Going up, however, it becomes clear that, in fact, not the complete virtual
mining view is needed. E.g., in Fig. 1, for node (a), all tuples of Sets are needed.
When going up to node (d), however, we see that only those tuples satisfying
(item = apple) are needed. Henceforth, to answer the subquery rooted at (d), it

suffices that the virtual mining view Sets only contains those tuples that come
from itemsets having the item apple, that is, only Sets[apple] is needed.

In the computation of the constraints on the virtual mining views, for every
node n, we annotate every node with a three-tuple (A, V, O). In this three-tuple,
A is the set of attributes {41, ..., A, } of that node, V is the set of virtual views
with the constraints for n {Vi[é1], Va[d2), ..., Vin[dm]}, and O a set of pairs
A; — Vj denoting that the values in attribute A; originate from the view V;.
Notice that the values in an attribute can originate from more than one view
at the same time, namely if two views have been joined on this attribute. We
now give rules to compute the annotation of a node in the expression tree, if the
annotations of its child nodes have been given. In this section we will restrict
the detailed technical explanation to the constructions needed for the example
query given in Fig. 1. For the complete explanation, we refer the reader to [4].

Leaf annotation. The annotations for the leaves Sets S; (node (a)) and Supports
Sz (node (b)) denote that there are two attributes connected to the views, named
S1 and Sa, respectively, both associated to an empty constraint ([]). For the
leaf Rules R (node (c)), the annotation is a bit more complicated, as there are
in fact four objects that can be constrained: the antecedent of the rule, the
consequent, the union of the two, and the rule itself. Therefore, four variables
are introduced that represent respectively these objects: SE SE S and R.
Thus, the annotations for the leaves (a), (b) and (c) are, respectively:

R.rid —
R
S1.81d — Sa.s1d — R.conf —¥ y
Sil] Sa[] R.sida —» SE
Sy.item —» Sao.supp — ¥ R.Z;d(i S%H
N C
R.sid —» S]]

Annotation of internal nodes. In node (d), only those tuples coming from (a)
that satisfy the condition (item = apple) are selected. From the annotation of
node (a), we observe that the attribute S;.item originates from the view S;
(Sets). Thus, we can actually associate the constraint [apple] to Si. By similar
reasoning, we can associate the constraint [supp > 40] to S and the constraint
[conf > 80%] to R. The annotation for nodes (d),(e) and (f) are, respectively:

R.rid —
R[conf > 80%)]

S1.81d — Sa.s1d —— R.conf —%
Silapple] Salsupp 2 401\ g Gigq ——» SR
Svitem — R Foode——ysh)

R.sid —» ST[]

In node (g), a cartesian product is made from the tuples coming from nodes
(d) and (e). Therefore, all tuples from nodes (d) and from node (e) should be
considered at this node. The annotation for node (g) is then the union of the
annotations of its child nodes:

Sl~3id\> SQ.SZ‘dN
Silapple] Sa[supp > 40]
S1.item —% Sa.supp —

In node (h), only those tuples coming from node (g) that satisfy the condition
(S1.sid = S3.sid) are selected. From the annotation of node (g), we can see that
Sy.sid is connected to the view S; with constraint [apple] and Ss.sid is connected
to the view So with constraint [supp > 40]. Then, according to the related
condition, the tuples really needed to be considered in node (h) are those coming
from the itemsets present in both of the views Sp[apple] and Sa[supp > 40], that
is, the same collection of itemsets having the item apple and with support greater
than or equal to 40. We can thus associate the constraint [apple A supp > 40]
to both views. Furthermore, as the itemsets come from the same collection, the
set of attributes of S; are now connected to the view S5 and vice versa. The
annotation for node (h) is as follows:

Sl‘sid

Si[apple A supp > 40]
Sy.item
SQ‘SZ.d

Sa[apple A supp > 40]
Sa.supp

The annotation for nodes (i) and (j) are constructed in the same way as the
annotations for nodes (g) and (h), respectively.

Finally, root node (1) projects the tuples coming from node (j) over the at-
tributes R.rid and R.conf. Its annotation is similar to that one of its child node
(j), keeping, however, only the attributes R.rid and R.conf and its connections.
The annotation for this node is then:

R.rid — SE[]
Sifapple A supp > 40] Rlconf > 80%] S®[]
Salapple A supp = 40] R.conf —% SBapple A supp > 40]

Observe that the annotation of the root node (1) has all the necessary infor-
mation we need in order to know exactly which tuples should be materialized
by the DBMS: According to the constraint [apple A supp > 40] associated to
the views S; and S3, we can identify that the views Sets and Supports should
contain all tuples coming from itemsets having the item apple and with support
of at least 40. According to the constraint associated to the view R, it is easy to
deduce that the view Rules should contain the tuples coming from association
rules with confidence of at least 80%. Moreover, as S is also associated to the
constraint [apple A supp > 40], the association rules should be generated from
the same collection of itemsets present in the views Sets and Supports. Note
that the constraints associated to S and S are both empty, which means that
there are no constraints considering the presence of items in the antecedent nor
the consequent of the rules, respectively. With this information, the DBMS can
trigger the necessary data mining algorithms with the identified constraints.

5 Conclusion

This paper proposes a different and new approach in which association rule
mining results can be queried as if they were stored in traditional relational

tables. This approach is based on the existence of wvirtual mining views that
represent mining results. Every time the user queries one of these views, data
mining algorithms are triggered by the DBMS in order to materialize, according
to the constraints within the given query, the patterns needed to answer it.
From the user’s point of view, the virtual mining views will always contain
all association rules and itemsets, but, according to our proposal, none of the
patterns should be actually stored. In reality, the action of querying a virtual
mining view triggers a data mining algorithm or a set of data mining algorithms
transparently to the user, which means that the user does not need to know how
to use data mining algorithms. Moreover, due to the fact that only the DBMS
is extended, the user can query the data by using a standard relational query
language. Extensions of query languages are not necessary in our approach.

Acknowledgement This work was partially funded by the EU project “IQ”,
and the FWO project “Foundations for Inductive Databases”. The second author
would also like to thank Jan Van den Bussche for many interesting discussions
and suggestions resulting in several of the ideas presented in this paper.

References

1. S. Abiteboul, R. Hull and V. Vianu. Foundations of Databases, Addison-Wesley
(1995).

2. R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules. In 20th
VLDB Conference (1994) 487-489.

3. T. Calders, L. V.S. Lakshmanan, R. T. Ng and J. Paredaens. Expressive Power of
an Algebra for Data Mining. Manuscript (2006).

4. T. Calders, B. Goethals and A. Prado. Constraint Extraction from SQL-queries.
Manuscript (2006).

5. B. Goethals, J. Van den Bussche and K. Vanhoof. Decision Support Queries for
the Interpretation of Data Mining Results. Manuscript (1998).

6. B. Goethals and J. Van den Bussche On Supporting Interactive Association Rule
Mining. In 2nd DaWaK (2000) 307-316.

7. H. Garcia-Molina, J. D. Ullman and J. Widom. Database System Implementation.
Prentice-Hall, Inc. (2000).

8. J. Han, Y. Fu, W. Wang, K. Koperski and O. Zaiane. DMQL: A Data Mining
Query Language for Relational Databases. In SIGMOD DMKD Workshop (1996).

9. T. Imielinski and H. Mannila. A Database Perspective on Knowledge Discovery.
Communications of the ACM, Vol. 39 (1996) 58-64.

10. T. Imielinski and A. Virmani. MSQL: A Query Language for Database Mining.
Data Mining and Knowledge Discovery, Vol. 3 (1999) 373-408.

11. R. Meo, G. Psaila and S. Ceri. An Extension to SQL for Mining Association Rules.
Data Mining and Knowledge Discovery, Vol. 2 (1998) 195-224.

12. T. Mitchell Machine Learning. McGraw Hill (1997).

13. H. Wang and C. Zaniolo. Nonmonotonic Reasoning in LDL++. In Logic-Based
Artificial Intelligence, J. Minker, Ed. Kluwer Academic Publishers (2000) 523-544.

14. H. Wang and C. Zaniolo. ATLaS: A Native Extension of SQL for Data Mining. In
3rd SIAM Conference (2003) 130-144.

