
Minimal k-Free Representations of Frequent Sets

Toon Calders1 and Bart Goethals2

1 University of Antwerp, Belgium
2 Helsinki Institute for Information Technology, Finland

Abstract. Due to the potentially immense amount of frequent sets
that can be generated from transactional databases, recent studies have
demonstrated the need for concise representations of all frequent sets.
These studies resulted in several successful algorithms that only generate
a lossless subset of the frequent sets. In this paper, we present a unifying
framework encapsulating most known concise representations. Because of
the deeper understanding of the different proposals thus obtained, we are
able to provide new, provably more concise, representations. These theo-
retical results are supported by several experiments showing the practical
applicability.

1 Introduction

The frequent itemset mining problem is by now well known [1]. We are given a
set of items I and a database D of subsets of I. The elements of D are called
transactions. An itemset I ⊆ I is some set of items; its support in D, denoted
support(I,D), is defined as the number of transactions in D that contain all
items of I. An itemset is called s-frequent in D if its support in D exceeds s. The
database D and the minimal support s are omitted when they are clear from the
context. The goal is now, given a minimal support threshold and a database, to
find all frequent itemsets. The set of all frequent itemsets is denoted F(D, s),
the set of infrequent sets is denoted F(D, s).

Recent studies on frequent itemset mining algorithms resulted in significant
performance improvements. However, if the minimal support threshold is set too
low, or the data is highly correlated, the number of frequent itemsets itself can
be extremely large. To overcome this problem, recently several proposals have
been made to construct a concise representation [13] of the frequent itemsets,
instead of mining all frequent itemsets: Closed sets [2, 4, 14–16], Free sets [5],
Disjunction-Free Sets [6, 10], Generalized Disjunction-Free Generators [12, 11],
and Non-Derivable Itemsets [8].

A Concise Representation of frequent sets is a subset of all frequent sets with
their supports that contains enough information to construct all frequent sets
with their support. Therefore, based on the representation, for each itemset I,
we must be able to (a) decide whether I is frequent, and (b) if I is frequent,
produce its support.

Mannila et al. [13] introduced the notion of a concise representation in a more
general context. Our definition resembles theirs, but for reasons of simplicity we
only concentrate on representations that are exact, and for frequent itemsets.

For representations the term concise will refer to their space-efficiency; that
is, R is called more concise than R′ if for every database D and support threshold
s, R(D, s) is smaller than or equal to R′(D, s).

We introduce new representations based on the deduction rules for support
presented in [8]. Many of the proposals in the literature, such as the free sets [5],
the disjunction-free sets [6, 10], the generalized disjunction-free sets [12, 11], the
disjunction-free generators [10], the generalized disjunction-free generators [11,
12], and the non-derivable itemsets [8] representations, will be shown to be man-
ifestations of this method. As such, the proposed method serves as a unifying
framework for these representations.

The organization of the paper is as follows. In Section 2 we briefly describe
different concise representations in the literature. Section 3 revisits the deduction
rules introduced in [8]. In Section 4, a unifying framework for different concise
representations is given, based on the deduction rules. Also new, minimal, rep-
resentations are introduced. In Section 5 we present the results of experiments
concerning the size of the different representations.

2 Related Work

Closed Sets The first successful concise representation was the closed set repre-
sentation introduced by Pasquier et al. [14]. In short, a closed set is an itemset
such that its frequency does not equal the frequency of any of its supersets. The
collection of the frequent closed sets together with their supports is a concise
representation. This representation will be denoted ClosedRep.

Generalized Disjunction-Free Sets [11, 12] Let X,Y be two disjunct itemsets.
The disjunctive rule X →

∨

Y is said to hold in the database D, if every trans-
action in D that contains X, also contains at least one item of Y . A set I is
called generalized disjunction-free if there do not exist disjunct subsets X,Y of
I such that X →

∨

Y holds. The set of all generalized disjunction free sets is
denoted GDFree.

In [12], a representation based on the frequent generalized disjunction-free
sets is introduced. On the one hand, based on the supports of all subsets of a
set I (including I), it can be decided whether I is generalized disjunction-free
or not. On the other hand, if a disjunctive rule X →

∨

Y holds, the support of
every superset I of X ∪ Y can be constructed from the supports of its subsets.
For example, a → b ∨ c holds if and only if for every superset X of abc,

supp(X) = supp(X − b) + supp(X − c) − supp(X − bc) .

Hence, if we know that a rule X →
∨

Y holds, there is no need to store supersets
of X ∪ Y in the representation.

However, the set of frequent generalized disjunction-free sets FGDFree is not
a representation. We illustrate this with an example. Suppose that FGDFree
completed with the supports is {(∅, 10), (a, 5), (b, 4), (c, 3), (ab, 3)}. What con-
clusion should be taken for the set ac? There can be two reasons for ac to be left

out of the representation: (a) because ac is infrequent, or (b) because ac is not
generalized disjunction-free. Furthermore, suppose that ac was left out because
it is not generalized disjunction-free. Since we have no clue which disjunctive rule
holds for ac, we cannot produce its support. Hence, FGDFree completed with
the supports of the sets clearly is not a representation. This problem is resolved
in [12] by adding a part of the border of the set FGDFree to the representation.

Definition 1. Let S be a set of itemsets. B(S) = {J | J 6∈ S,∀J ′ ⊂ J : J ′ ∈ S}.

Suppose that we also store the sets in B(FGDFree) in the representation.
Let I be a set not in FGDFree ∪ B(FGDFree). There exists a set J ⊂ I in
B(FGDFree). The set J is either infrequent, or not generalized disjunction-free.
If J is infrequent, then I is as well. If J is not generalized disjunction-free, then
the supports of all subsets of J (including the support of J) allow for determining
the rule X →

∨

Y that holds for J . Hence, we know a rule X →
∨

Y that holds
for I (X,Y ⊆ J ⊂ I). Therefore, from the supports of all strict subsets of I, we
can derive the support of I using this rule. Using induction on the cardinality
of I, it can easily be proven that FGDFree ∪ B(FGDFree) completed with the
supports is a representation. For the details, we refer to [11, 12].

It is also remarked in [12] that it is not necessary to store the complete
border B(FGDFree). For example, we could decide to leave out the infrequent
sets. When reconstructing the complete set of frequent itemsets, we will be able
to recognize these infrequent sets in the border because they are the only sets that
have all their strict subsets in FGDFree, but that are not in the representation
themselves. Other alternatives are the generalized disjunction-free generators
representation (GDFreeGenRep) [12] and the representations in Section 4.

Free and Disjunction-Free Sets [5, 6, 10] Free and disjunction-free sets are special
cases of generalized disjunction-free sets. For free sets, the righthand side of the
rules X →

∨

Y is restricted to singletons, for disjunction free sets to singletons
and pairs. Hence, a set I is free if and only if there does not exist a rule X → a

that holds with X ∪ {a} ⊆ I, and I is disjunction-free if there does not exists
a rule X → a ∨ b that holds with X ∪ {a, b} ⊆ I. The free and disjunction-free
sets are denoted respectively by Free and DFree, the frequent free and frequent
disjunction-free sets by FFree and FDFree.

Again, neither FFree nor FDFree completed with the supports form a con-
cise representation. The reasons are the same as explained for the generalized
disjunction-free sets above. Hence, for the representations based on the free sets
and the disjunction-free sets, (parts of) the border must be stored as well. Which
parts of the border are stored can have a significant influence on the size of the
representations, since the border is often very large, sometimes even larger than
the total number of frequent itemsets.

However, the parts of the border that are stored in the representations pre-
sented in [5, 6, 10–12] are often far from optimal. In this paper we describe a
unifying framework for these disjunctive-rule based representations. This frame-
work is based on the deduction rules for support presented in [8] and revisited
in Section 3. The framework allows a neat description of the different strategies

used in the free, disjunction-free and generalized disjunction-free based repre-
sentations. Due to the deeper understanding of the problem resulting from the
unifying framework, we are able to find new and more concise representations
that drastically reduce the number of sets to be stored.

3 Deduction Rules

In this section we review the deduction rules introduced in [8]. These rules derive
bounds on the support of an itemset I if the supports of all strict subsets of I

are known. In [7], it is shown that these rules are sound and complete; that is,
they compute the best possible bounds.

Let a generalized itemset be a conjunction of items and negations of items.
For example, G = {a, b, c, d} is a generalized itemset. A transaction T contains a
general itemset G = X∪Y if X ⊆ T and T ∩Y = ∅. The support of a generalized
itemset G in a database D is the number of transactions of D that contain G.

We say that a general itemset G = X ∪Y is based on itemset I if I = X ∪Y .
From the well known inclusion-exclusion principle [9], we know that for a given
general itemset G = X ∪ Y based on I,

support(G) =
∑

X⊆J⊆I

(−1)|J\X|support(J) .

Since supp(G) is always larger than or equal to 0, we derive
∑

X⊆J⊆I

(−1)|J\X|support(J) ≥ 0

If we isolate supp(I) in this inequality, we obtain the following bound on the
support of I:

supp(I) ≤
∑

X⊆J⊂I

(−1)|I\J|+1supp(J) If |I \ J | odd

supp(I) ≥
∑

X⊆J⊂I

(−1)|I\J|+1supp(J) If |I \ J | even

This rule will be denoted RI(X). Depending of the sign of the coefficient of
supp(I), the bound is a lower or an upper bound. If |I \ X| is odd, RI(X) is
an upper bound, otherwise it is a lower bound. Thus, given the supports of all
subsets of an itemset I, we can derive lower and upper bounds on the support
of I with the rules RI(X) for all G = X ∪ Y based on I.

We denote the greatest lower bound on I by LB(I) and the least upper bound
by UB(I). The complexity of the rules RI(X) increases exponentially with the
cardinality of I \X. The number |I \X| is called the depth of rule RI(X). Since
calculating all rules is often tedious, we sometimes restrict ourselves to only rules
of limited depth. More specifically, we denote the greatest lower and least upper
bounds on the support of I resulting from evaluation of rules up to depth k

by LBk(I) and UBk(I). Hence, the interval [LBk(I), UBk(I)] are the bounds
calculated by the rules {RI(X) | X ⊆ I, |I \ X| ≤ k}.

Example 1. Consider the following database:

TID Items

1 a

2 b

3 c

4 a, b

5 a, c

6 b, c

7 a, b, c

supp(abc) ≥ 0
≤ sab = 2
≤ sac = 2
≤ sbc = 2
≥ sab + sac − sa = 0
≥ sab + sbc − sb = 0
≥ sac + sbc − sc = 0
≤ sab + sac + sbc − sa − sb − sc + s∅ = 1

The rules above are the rules Rabc(X) for X respectively abc, ab, ac, bc, a, b, c, ∅.
The first rule has depth 0, the following three rules depth 1, the next three rules
depth 2, and the last rule has depth 3. Hence, LB 0(abc) = 0, LB2(abc) = 0,
UB1(abc) = 2, UB3(abc) = 1. 2

Links Between RI(X), the support of X∪Y , and X →
∨

Y : Let I be an itemset,
and G = X ∪ Y a generalized itemset based on I. From the derivation of the
rule RI(X), it can be seen that the difference between the bound calculated by
it, and the actual support of I equals the support of X ∪ Y . Hence, the bound
calculated by RI(X) equals supp(I) if and only if supp(X ∪ Y) = 0. It is also
true that the disjunctive rule X →

∨

Y holds if and only if supp(X ∪ Y) = 0.
Indeed, if supp(X∪Y) is 0, then there are no transactions that contain X but do
not contain any of the items in Y . Therefore, we obtain the following theorem.

Theorem 1. Let I be an itemset, and G = X ∪ Y a generalized itemset based
on I. The following are equivalent:
(a) The bound calculated by RI(X) equals the support of I,
(b) supp(G) = 0, and
(c) The disjunctive rule X →

∨

Y holds. 2

Example 2. We continue Example 1. Since the bound 1 calculated by Rabc(∅)
equals supp(abc), supp(abc) must be 0. Indeed, there is no transaction that con-
tains none of a,b, or c. Hence, the disjunctive rule ∅ → a ∨ b ∨ c holds. On the
other hand, the difference between the bound calculated by Rabc(a) and the
actual support of abc is 1. Hence, supp(a ∪ bc) = 1. 2

4 Unifying Framework

In [8] we introduced the NDI representation based on the deduction rules which
we repeated in Section 3. The NDI-representation was defined as follows:

NDIRep(D, s) =def {(I, supp(I,D)) | supp(I,D) ≥ s,LB(I) 6= UB(I)}

Hence, if a set I is not in the representation, then either LB(I) = UB(I), and
hence the support of I is determined uniquely by the deduction rules, or I is

infrequent. A set I with LB(I) = UB(I) is called a derivable itemset (DI), oth-
erwise it is called a non-derivable itemset (NDI). Derivability is anti-monotone,
which allows an Apriori-like algorithm [8].

NDIRep is the only representation that is based on logical implication. For
every set I not in the representation, I is either infrequent in every database
consistent with the supports in NDIRep, or every such database gives the same
support to I. All other representations are based on additional assumptions. For
example, in the disjunction-free generators representation there is an explicit
assumption that all sets in the border of FGDFree that are not in the represen-
tation, are not free. Such assumptions make it possible to reduce the size of the
representations.

In this section, we add similar assumptions to the NDI-based representations.
In order to do this, we identify different groups of itemsets: itemsets that are
frequent versus those that are infrequent, sets that have support equal to the
lower bound, equal to the upper bound, etc. Based on these groups a similar
strategy as for the free, the disjunction-free, and the generalized disjunction-free
representations will be followed. We identify minimal sets of groups that need
to be stored in order to obtain a representation.

4.1 k-Free Sets

The k-free sets will be a key tool in the unified framework.

Definition 2.

A set I is said to be k-free, if supp(I) 6= LBk(I) and supp(I) 6= UBk(I).
A set I is said to be ∞-free, if supp(I) 6= LB(I), and supp(I) 6= UB(I).
The set of all k-free (∞-free) sets is denoted Freek (Free∞). 2

As the next lemma states, these definitions cover freeness, disjunction-freeness,
and generalized disjunction-freeness. The proof is based on Theorem 1, but is
omitted because of space restrictions.

Lemma 1. Let I be an itemset.

– I is free if and only if I is 1-free
– I is disjunction free if and only if I is 2-free.
– I is generalized disjunction-free if and only if I is ∞-free.

k-freeness is anti-monotone; if a set I is k-free, then all its subsets are k-free as
well. Moreover, if supp(J) = LBk(J) (supp(J) = UBk(J)), then also supp(I) =
LBk(I) (supp(I) = UBk(I)), for all J ⊆ I.

4.2 Groups in the Border

Let now FFreek be the frequent k-free sets. As we argued in Section 2 for the gen-
eralized disjunction-free representations, FFreek is not a representation. Indeed,
if a set I is not in the representation, there is no way to know whether I was left
out of the representation because I is infrequent, or because supp(I) = LB k(I),

supp(I) = LBk(I) = UBk(I) flu

Frequent supp(I) = LBk(I) 6= UBk(I) flu

LBk ≥ t cflu

supp(I) = UBk(I) 6= LBk(I) flu

LBk < t uflu

supp(I) = LBk(I) = UBk(I) ilu

UBk < t cilu

supp(I) = LBk(I) 6= UBk(I) ilu

Infrequent UBk ≥ t uilu

supp(I) = UBk(I) 6= LBk(I) ilu

UBk < t cilu

supp(I) 6= LBk(I) 6= UBk(I) ilu

UBk ≥ t uilu

Fig. 1. This tree classifies every set in B(FFreek) in the right group. Only the groups
that are in a rectangle need to be stored in a representation.

or because supp(I) = UBk(I). To resolve this problem, parts of the border
B(FFreek) have to be stored as well. If we can restore the border exactly, then
also the other frequent sets can be determined. This can be seen as follows: if
a set I is not in B(FFreek), and not in FFreek, then it has a subset J in the
border. If this set J is infrequent, then so is I. If supp(J) = LB k(J), then also
supp(I) = LBk(I), and, if supp(J) = UBk(J), then also supp(I) = UBk(I)
(Lemma 1). Hence, if we can restore the complete border, then we can restore
all necessary information.

The sets in B(FFreek) can be divided in different groups, depending on
whether they are frequent or not, have frequency equal to the lower bound or
not, and have frequency equal to the upper bound or not. In order to make the
discussion easier, we introduce a 3-letter notation to denote the different groups
in the border. The first letter denotes whether the sets in the group are frequent:
f is frequent, i is infrequent. The second letter is l if the sets I in the group
have supp(I) = LBk(I), otherwise it is l. The third letter is u for groups with
supp(I) = UBk(I), and u otherwise. The rule depth k is indicated as a subscript
to the notation. For example, fluk denotes the group

fluk =def B(FFreek) ∩ F ∩ {I | supp(I) 6= LBk(I)}
∩ {I | supp(I) = UBk(I)} ,

and iluk denotes the group

iluk =def B(FFreek) ∩ F ∩ {I | supp(I) = LBk(I)}
∩ {I | supp(I) 6= UBk(I)} .

We split some of the groups even further, based on whether or not the bounds
LBk(I), and UBk(I) allow to conclude that a set is certainly frequent or certainly

infrequent. For example, in the group flu, we distinguish between sets I such
that the bounds allow to derive that I is frequent, and the other sets. That is,
cflu (c of certain), is the set

cfluk =def B(FFreek) ∩ F ∩ {I | supp(I) 6= LBk(I)}
∩ {I | supp(I) = UBk(I)} ∩ {I | LBk(I) ≥ s}.

The other sets of flu are in uflu (u of uncertain). Thus, uflu is the set

ufluk =def B(FFreek) ∩ F ∩ {I | supp(I) 6= LBk(I)}
∩ {I | supp(I) = UBk(I)} ∩ {I | LBk(I) < s}.

Some of the groups only contain certain or uncertain sets, such as flu. Since
flu only contains frequent sets I with supp(I) = LBk(I), automatically the
condition LBk(I) ≥ s is fulfilled. The different groups are depicted in Figure 1.

The tree in this figure indicates to which group a set I ∈ B(FFreek) belongs.
For example, a frequent set with supp(I) = LBk(I), and supp(I) 6= UBk(I),
takes the upper branch at the first split, since it is frequent, and the second
branch in the second split. Notice that there are no groups with code flu, because
sets that are frequent and have a frequency that equals neither the lower, nor the
upper bound, must be in FFreek and hence cannot be in B(FFreek). To make
notations more concise, we will sometimes leave out some of the letters. For
example, flk denotes the union fluk ∪ fluk, and ilk denotes iluk ∪ ciluk ∪uiluk.

4.3 Representations Expressed with FFreek and the Groups

We can express many of the existing representations in function of FFreek for a
certain k, and a list of groups in the border of FFreek. Table 1 describes different
existing representations in this way. The correctness of this table is proven in [7].
The first line of the table for example, states that the free sets representation
actually is

({(I, supp(I)) | I ∈ FFree1}, f lu1, cilu1, uilu1, cilu1, uilu1) .

We do not differentiate between a representation that stores the different groups
separately, or in one set; that is, storing the one set flu ∪ flu is considered the
same as storing the pair of sets (flu, flu). The reason for this is that for space
usage the difference between the two is not significant.

The notation fu∞,1 and iu∞,1 for the generalized disjunction-free generators
representation indicates that in this representation, FFree∞ is used as basis, but
for pruning the border B(FFree∞), only rules up to depth 1 are used. In the
experiments however, we will use the other rules for pruning the border as well,
and hence we report a slightly better size for this representation.

4.4 Minimal Representations

We can not distinguish between two itemsets within the same group if we only
use comparisons between their lower and upper bound, their support, and the

Representation Base with frequency without frequency

FreeRep FFree1 u1

DFreeRep FFree2 complete border
DFreeGenRep FFree2 flu2 iu2

GDFreeRep FFree∞ complete border
GDFreeGenRep FFree∞ fu∞,1 iu∞,1

NDIRep FFree∞ flu∞, f lu∞

Table 1. Representations in function of FFreek and the groups in B(FFreek).
DFreeGenRep denotes the disjunction-free generators representation, GDFreeGenRep

the generalized disjunction-free generators representation.

minimal support threshold. Hence, we can think of the different groups as being
equivalence classes. We will now concentrate on which of these classes have to
be stored to get a minimal representation.

Instead of storing the complete border in a representation, we can restrict
ourselves to only some of the groups. It is, for example, not necessary to store
the groups flu and ilu, because every set I in these two groups has supp(I) =
LBk(I) = UBk(I), and thus, its support is derivable. Furthermore, it is not
necessary to store the sets in ilu, cilu, and cilu, because these sets have UB k(I) <

s and thus are certainly infrequent. In Figure 1, the groups which cannot be
excluded directly are indicated with boxes. The other groups can always be
reconstructed, based on FFreek.

Notice that for all these groups, there is no need to store the supports of
the sets in it. For example, for fluk all sets I in fluk have supp(I) = LBk(I).
Hence, we can derive the support of a set I if we know that I is in fluk. Similar
observations hold for the other groups as well. In the proposed representations,
each group is stored separately.

We can reduce the number of groups even more. For some subsets G =
{g1, . . . , gn} of the remaining groups {fluk, cfluk, ufluk, uiluk, uiluk}, the struc-
ture

({(I, supp(I)) | I ∈ FFreek}, g1, . . . , gn)

will be a representation, and for some groups G will not. We denote the structure
associated with G and rules up to depth k with Sk(G).

The structure Sk({fluk, cfluk}) is a representation for every k, but neither
Sk({fluk}), nor Sk({cfluk}) are. Hence, Sk({fluk, cfluk}) is a minimal repre-
sentation among the representations Sk(G). The only minimal sets of groups G
such that the associated structures are representations are:

G1 = {flu, uflu} , G2 = {cflu, uflu} ,

G3 = {flu, uilu, uilu} , and G4 = {cflu, uilu, uilu} .

Theorem 2. [7] Let G ⊆ {flu, cflu, uflu, uilu, uilu}. Sk(G) is a representation
if and only if either G1 ⊆ G, or G2 ⊆ G, or G3 ⊆ G, or G4 ⊆ G.

FreeRep DFreeRep

DFreeGenRep

GDFreeRep

GDFreeGenRep S∞(G3)

‖

S1(G3) ‖

S2(G3)

S∞(G4)

{(I, supp(I)) | I ∈ F}

NDIRep

S∞(G1)

S∞(G2)

ClosedRep

less concise more concise

Fig. 2. Relation between the different representations

For the proof we refer to [7]. The theorem implies that representations S∞(G1),
S∞(G2),S∞(G3), and S∞(G4) are minimal. Thus, all representations in Table 1,
have at least one Sk(G) that is more concise. The relations between the different
representations are given in Figure 2. For proofs of the relations see [7].

5 Experiments

To empirically evaluate the newly proposed concise representations, we experi-
mented with several database benchmarks used in [16]. Due to space limitations,
we only report results for the BMS-Webview-1 dataset, containing 59 602 trans-
actions, created from click-stream data from a small dot-com company which
no longer exists [17], and the pumsb* dataset, containing 100 000 transactions
from census data from which items that occur more frequently than 80% are re-
moved [3]. Each experiment finished within minutes (mostly seconds) on a 1GHz
Pentium IV PC with 1GB of main memory.

Figure 3 shows the total number of itemsets that is stored for each of the
four new representations, together with the previously known minimal represen-
tations, i.e., the non-derivable itemsets, the closed itemsets, and the generalized
disjunction-free generators.

In both experiments, the representations S∞(G1) and S∞(G2) have more or
less the same size. This is not very surprising, since the parts of the border these
two representations store have a big overlap. Also the representations S∞(G3)
and S∞(G4) are almost equal in size. Again we see that G3 and G4 are almost
equal.

Notice also that for BMS-Webview-1 the representations GDFreeGenRep and
S∞(G3) have the same size. The reason for this can be found in Figure 2. In this
figure we see that the size of GDFreeGenRep is between the sizes of S2(G3) and
S∞(G3). Therefore, the fewer rules of depth more than 2 that need to evaluated
in order to get optimal bounds, the closer GDFreeGenRep will be to S∞(G3). In

Figure 4, the effect of varying rule depth is given. The plot shows the sizes of the
representations Sk(Gi) for different values of k. For the BMS-Webview-1 dataset,
evaluating rules of depth greater than 2 does not give any additional gain. In
the pumsb* dataset, some gain is still achieved with rules of depth 3. Hence, in
the BMS-Webview-1 dataset, GDFreeGenRep and S∞(G3) have similar size, and
in the pumsb*-dataset, there is a slight difference in the part of the border that
is stored. In the BMS-Webview-1 dataset, the total number of sets in represen-

50000

75000

100000

125000

150000

175000

200000

225000

363840

se

ts

minimal support

GDFreeGenRep
S(G3)
S(G4)

NDIRep
S(G1)
S(G2)

ClosedRep

0

20000

40000

60000

80000

100000

120000

140000

160000

80009000100001100012000130001400015000

se

ts

minimal support

ClosedRep
GDFreeGenRep

NDIRep
S(G3)
S(G4)
S(G1)
S(G2)

(a) BMS-Webview-1 (b) pumsb*

Fig. 3. Number of sets in concise representations for varying minimal support.

80000

100000

120000

140000

160000

180000

200000

220000

240000

1 2 3 4 5 6

se

ts

rule depth (k)

S(G3)
S(G4)

NDIRep
S(G1)
S(G2)

100000

150000

200000

250000

300000

1 2 3 4 5 6 7

se

ts

rule depth (k)

NDIRep
S(G3)
S(G4)
S(G1)
S(G2)

(a) BMS-Webview-1 (b) pumsb*

Fig. 4. Number of sets in concise representations of BMS-Webview-1 for varying rule
depth.

tations S∞(G1) and S∞(G2) is smaller than all other representations, except for
the closed sets. However, in the pumsb* dataset, the closed set representation
is much larger than all others. As can be seen, S∞(G3) and S∞(G4) sometimes
contain more sets, which was expected since these representations also include
infrequent sets.

Additionally, to get these results, only rules up to depth 3 were needed to
be evaluated. This is illustrated in Figure 4, in which we plotted the size of the
condensed representation for varying rule depth.

Also, for all other experiments almost no additional gain resulted from eval-
uating rules of depth larger than 3. As a consequence, the additional effort to
evaluate only these rules is almost negligible during the candidate generation
of the frequent set mining algorithm. Indeed, for every itemset I, at most

(

|I|
3

)

rules need to be evaluated, each containing at most three terms.

References

1. R. Agrawal, T. Imilienski, and A. Swami. Mining association rules between sets
of items in large databases. In Proc. ACM SIGMOD, pages 207–216, Washington,
D.C., 1993.

2. Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal. Mining frequent
patterns with counting inference. SIGKDD Explorations, 2(2):66–75, 2000.

3. C.L. Blake and C.J. Merz. UCI Repository of machine learning databases.
University of California, Irvine, Dept. of Information and Computer Sciences,
http://www.ics.uci.edu/ mlearn/MLRepository.html, 1998.

4. J.-F. Boulicaut and A. Bykowski. Frequent closures as a concise representation for
binary data mining. In Proc. PaKDD, pages 62–73, 2000.

5. J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Approximation of frequency queries
by means of free-sets. In Proc. PKDD, pages 75–85, 2000.

6. A. Bykowski and C. Rigotti. A condensed representation to find frequent patterns.
In Proc. PODS, 2001.

7. T. Calders. Axiomatization and Deduction Rules for the Frequency

of Itemsets. PhD thesis, University of Antwerp, Belgium, http://win-
www.ruca.ua.ac.be/u/calders/download/thesis.pdf, May 2003.

8. T. Calders and B. Goethals. Mining all non-derivable frequent itemsets. In Proc.

PKDD, pages 74–85. Springer, 2002.
9. J. Galambos and I. Simonelli. Bonferroni-type Inequalities with Applications.

Springer, 1996.
10. M. Kryszkiewicz. Concise representation of frequent patterns based on disjunction-

free generators. In Proc. ICDM, pages 305–312, 2001.
11. M. Kryszkiewicz and M. Gajek. Concise representation of frequent patterns based

on generalized disjunction-free generators. In Proc. PaKDD, pages 159–171, 2002.
12. M. Kryszkiewicz and M. Gajek. Why to apply generalized disjunction-free gener-

ators representation of frequent patterns? In Proc. ISMIS, pages 382–392, 2002.
13. H. Mannila and H. Toivonen. Multiple uses of frequent sets and condensed repre-

sentations. In Proc. KDD, 1996.
14. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed

itemsets for association rules. In Proc. ICDT, pages 398–416, 1999.
15. J. Pei, J. Han, and R. Mao. Closet: An efficient algorithm for mining frequent

closed itemsets. In ACM SIGMOD Workshop DMKD, Dallas, TX, 2000.
16. M.J. Zaki and C. Hsiao. ChARM: An efficient algorithm for closed association rule

mining. In TR 99-10, Computer Science, Rensselaer Polytechnic Institute, 1999.
17. Z. Zheng, R. Kohavi, and L. Mason. Real world performance of association rule

algorithms. In Proc. KDD, pages 401–406, 2001.

