
Mining All Non-Derivable Frequent Itemsets

Toon Calders1? and Bart Goethals2

1 University of Antwerp, Belgium
2 University of Limburg, Belgium

Abstract. Recent studies on frequent itemset mining algorithms re-
sulted in significant performance improvements. However, if the mini-
mal support threshold is set too low, or the data is highly correlated, the
number of frequent itemsets itself can be prohibitively large. To overcome
this problem, recently several proposals have been made to construct a
concise representation of the frequent itemsets, instead of mining all fre-
quent itemsets. The main goal of this paper is to identify redundancies
in the set of all frequent itemsets and to exploit these redundancies in
order to reduce the result of a mining operation. We present deduction
rules to derive tight bounds on the support of candidate itemsets. We
show how the deduction rules allow for constructing a minimal represen-
tation for all frequent itemsets. We also present connections between our
proposal and recent proposals for concise representations and we give the
results of experiments on real-life datasets that show the effectiveness of
the deduction rules. In fact, the experiments even show that in many
cases, first mining the concise representation, and then creating the fre-
quent itemsets from this representation outperforms existing frequent set
mining algorithms.

1 Introduction

The frequent itemset mining problem [1] is by now well known. We are given a set
of items I and a database D of subsets of I, together with a unique identifier.
The elements of D are called transactions. An itemset I ⊆ I is some set of
items; its support in D, denoted by support(I,D), is defined as the number of
transactions in D that contain all items of I; and an itemset is called s-frequent
in D if its support in D exceeds s. D and s are omitted when they are clear from
the context. The goal is now, given a minimal support threshold and a database,
to find all frequent itemsets.
The search space of this problem, all subsets of I, is clearly huge. Instead

of generating and counting the supports of all these itemsets at once, several
solutions have been proposed to perform a more directed search through all pat-
terns. However, this directed search enforces several scans through the database,
which brings up another great cost, because these databases tend to be very
large, and hence they do not fit into main memory.

? Research Assistant of the Fund for Scientific Research - Flanders (FWO-
Vlaanderen).



The standard Apriori algorithm [2] for solving this problem is based on the
monotonicity property : all supersets of an infrequent itemset must be infrequent.
Hence, if an itemset is infrequent, then all of its supersets can be pruned from
the search-space. An itemset is thus considered potentially frequent, also called
a candidate itemset, only if all its subsets are already known to be frequent.
In every step of the algorithm, all candidate itemsets are generated and their
supports are then counted by performing a complete scan of the transaction
database. This is repeated until no new candidate itemsets can be generated.

Recent studies on frequent itemset mining algorithms resulted in significant
performance improvements. In the early days, the size of the database and the
generation of a reasonable amount of frequent itemsets were considered the most
costly aspects of frequent itemset mining, and most energy went into minimizing
the number of scans through the database. However, if the minimal support
threshold is set too low, or the data is highly correlated, the number of frequent
itemsets itself can be prohibitively large. To overcome this problem, recently
several proposals have been made to construct a concise representation of the
frequent itemsets, instead of mining all frequent itemsets [13, 3, 6, 5, 14, 15, 7, 11].

Our contributions The main goal of this paper is to present several new methods
to identify redundancies in the set of all frequent itemsets and to exploit these
redundancies, resulting in a concise representation of all frequent itemsets and
significant performance improvements of a mining operation.

1. We present a complete set of deduction rules to derive tight intervals on the
support of candidate itemsets.

2. We show how the deduction rules can be used to construct a minimal rep-
resentation of all frequent itemsets, consisting of all frequent itemsets of
which the exact support can not be derived, and present an algorithm that
efficiently does so.

3. Also based on these deduction rules, we present an efficient method to find
the exact support of all frequent itemsets, that are not in this concise rep-
resentation, without scanning the database.

4. We present connections between our proposal and recent proposals for con-
cise representations, such as free sets [6], disjunction-free sets [7], and closed
sets [13]. We also show that known tricks to improve performance of frequent
itemset mining algorithms, such as used in MAXMINER [4] and PASCAL [3],
can be described in our framework.

5. We present several experiments on real-life datasets that show the effective-
ness of the deduction rules.

The outline of the paper is as follows. In Section 2 we introduce the deduction
rules. Section 3 describes how we can use the rules to reduce the set of frequent
itemsets. In Section 4 we give an algorithm to efficiently find this reduced set,
and in Section 5 we evaluate the algorithm empirically. Related work is discussed
in depth in Section 6.



2 Deduction Rules

In all that follows, I is the set of all items and D is the transaction database.
We will now describe sound and complete rules for deducing tight bounds

on the support of an itemset I ⊆ I, if the supports of all its subsets are given.
In order to do this, we will not consider itemsets that are no subset of I, and
we can assume that all items in D are elements of I. Indeed, “projecting away”
the other items in a transaction database does not change the supports of the
subsets of I.

Definition 1. (I-Projection) Let I ⊆ I be an itemset.

– The I-projection of a transaction T , denoted πIT , is defined as πIT := {i |
i ∈ T ∩ I}.

– The I-projection of a transaction database D, denoted πID, consist of all
I-projected transactions from D.

Lemma 1. Let I, J be itemsets, such that I ⊆ J ⊆ I. For every transaction
database D, the following holds:

support(I,D) = support(I, πJD).

Before we introduce the deduction rules, we introduce fractions and covers.

Definition 2. (I-Fraction) Let I, J be itemsets, such that I ⊆ J ⊆ I, the
I-fraction of πJD, denoted by fJ

I (D) equals the number of transactions in πJD
that exactly consist of the set I.

If D is clear from the context, we will write fJ
I , and if J = I, we will write fI .

The support of an itemset I is then
∑

I⊆I′⊆I fI′ .

Definition 3. (Cover) Let I ⊆ I be an itemset. The cover of I in D, denoted
by Cover(I,D), consists of all transactions in D that contain I.

Again, we will write Cover(I) if D is clear from the context.
Let I, J ⊆ I be itemsets, and J = I ∪{A1, . . . , An}. Notice that Cover(J) =

⋂n
i=1

Cover(I∪{Ai}), and that |
⋃n

i=1
Cover(I∪{Ai})| = |Cover(I)|−f

J
I . From

the well-known inclusion-exclusion principle [10, p.181] we learn

|Cover(I)| − fJ
I =

∑

1≤i≤n

|Cover(I ∪ {Ai})|

−
∑

1≤i<j≤n

|Cover(I ∪ {Ai, Aj})|+ · · · − (−1)
n|Cover(J)|,

and since support(I ∪ {Ai1 , . . . , Ai`
}) = |Cover(I ∪ {Ai1 , . . . , Ai`

})|, we obtain

(−1)|J−I|support(J)− fJ
I = support(I)−

∑

1≤i≤n

support(I ∪ {Ai})

+
∑

1≤i<j≤n

support(I ∪ {Ai, Aj}) + · · ·+ (−1)
|J−I|−1

∑

1≤i≤n

support(J − {Ai})



From now on, we will denote the sum on the right-hand side of this last equation
by σ(I, J).
Since fJ

I is always positive, we obtain the following theorem.

Theorem 1. For all itemsets I, J ⊆ I, σ(I, J) is a lower (upper) bound on
support(J) if |J − I| is even (odd). The difference |support(J)−σ(I, J)| is given
by fJ

I .

We will refer to the rule involving σ(I, J) as RJ(I) and omit J when clear from
the context.
If for each subset I ⊂ J , the support support(I,D) = sI is given, then the

rules RJ(.) allow for calculating lower and upper bounds on the support of J .
Let l denote the greatest lower bound we can derive with these rules, and u the
smallest upper bound we can derive. Since the rules are sound, the support of
J must be in the interval [l, u]. In [8], we show also that these bounds on the
support of J are tight ; i.e., for every smaller interval [l′, u′] ⊂ [l, u], we can find
a database D′ such that for each subset I of J , support(I,D′) = sI , but the
support of J is not within [l′, u′].

Theorem 2. For all itemsets I, J ⊆ I, the rules {RJ (I) | I ⊆ J} are sound
and complete for deducing bounds on the support of J based on the supports of
all subsets of J .

The proof of the completeness relies on the fact that for all I ⊆ J , we have
support(I,D) =

∑

I⊆I′⊆I fI′ . We can consider the linear program consisting of
all these equalities, together with the conditions fI ≥ 0 for all fractions fI . The
existence of a database D′ that satisfies the given supports is equivalent to the
existence of a solution to this linear program in the fI ’s and support(J,D

′). From
this equivalence, tightness of the bounds can be proved. For the details of the
proof we refer to [8].

Example 1. Consider the following transaction database.

D =

A,B,C
A,C,D
A,B,D
C,D
B,C,D
A,D
B,D
B,C,D
B,C,D
A,B,C,D

sA = 5, sB = 7, sC = 7,
sD = 9, sAB = 3, sAC = 3,
sAD = 4, sBC = 5, sBD = 6,
sCD = 6, sABC = 2, sABD = 2,
sACD = 2, sBCD = 4.

Figure 1 gives the rules to determine tight bounds on the support of ABCD.
Using these deduction rules, we derive the following bounds on support(ABCD)
without counting in the database.

Lower bound: support(ABCD) ≥ 1 (Rule R(AC))
Upper bound: support(ABCD) ≤ 1 (Rule R(A))

























































































































support(ABCD) ≥ sABC + sABD + sACD + sBCD − sAB − sAC − sAD R{}

−sBC − sBD − sCD + sA + sB + sC + sD − s{}

support(ABCD) ≤ sA − sAB − sAC − sAD + sABC + sABD + sACD RA

support(ABCD) ≤ sB − sAB − sBC − sBD + sABC + sABD + sBCD RB

support(ABCD) ≤ sC − sAC − sBC − sCD + sABC + sACD + sBCD RC

support(ABCD) ≤ sD − sAD − sBD − sCD + sABD + sACD + sBCD RD

support(ABCD) ≥ sABC + sABD − sAB RAB

support(ABCD) ≥ sABC + sACD − sAC RAC

support(ABCD) ≥ sABD + sACD − sAD RAD

support(ABCD) ≥ sABC + sBCD − sBC RBC

support(ABCD) ≥ sABD + sBCD − sBD RBD

support(ABCD) ≥ sACD + sBCD − sCD RCD

support(ABCD) ≤ sABC RABC

support(ABCD) ≤ sABD RABD

support(ABCD) ≤ sACD RACD

support(ABCD) ≤ sBCD RBCD

support(ABCD) ≥ 0 RABCD

Fig. 1. Tight bounds on support(ABCD). sI denotes support(I)

Therefore, we can conclude, without having to rescan the database, that the
support of ABCD in D is exactly 1, while a standard monotonicity check would
yield an upper bound of 2.

3 Non-Derivable Itemsets as a Concise Representation

Based on the deduction rules, it is possible to generate a summary of the set of
frequent itemsets. Indeed, suppose that the deduction rules allow for deducing
the support of a frequent itemset I exactly , based on the supports of its subsets.
Then there is no need to explicitly count the support of I requiring a complete
database scan; if we need the support of I, we can always simply derive it
using the deduction rules. Such a set I, of which we can perfectly derive the
support, will be called a Derivable Itemset (DI), all other itemsets are called
Non-Derivable Itemsets (NDIs). We will show in this section that the set of
frequent NDIs allows for computing the supports of all other frequent itemsets,
and as such, forms a concise representation [12] of the frequent itemsets. To
prove this result, we first need to show that when a set I is non-derivable, then
also all its subsets are non-derivable. For each set I, let lI (uI) denote the lower
(upper) bound we can derive using the deduction rules.

Lemma 2. (Monotonicity) Let I ⊆ I be an itemset, and i ∈ I − I an item.
Then 2|uI∪{i} − lI∪{i}| ≤ 2min(|support(I) − lI |, |support(I) − ui|) ≤ |uI − lI |.
In particular, if I is a DI, then also I ∪ {i} is a DI.

Proof. The proof is based on the fact that f I
J = f

I∪{i}
J +f

I∪{i}
J∪{I}. From Theorem 1

we know that f I
J is the difference between the bound calculated by RI(J) and



the real support of I. Let now J be such that the ruleRI(J) calculates the bound
that is closest to the support of I. Then, the width of the interval [lI , uI ] is at
least 2f I

J . Furthermore, RI∪{i}(J) and RI∪{i}(J ∪{i}) are a lower and an upper
bound on the support of I∪{i} (if |I∪{i}− (J ∪{i})| is odd, then |I∪{i}−J | is

even and vice versa), and these bounds on I ∪ {i} differ respectively f
I∪{i}
J and

f
I∪{i}
J∪{I} from the real support of I ∪{i}. When we combine all these observations,

we get: uI∪{i} − lI∪{i} ≤ f
I∪{i}
J + f

I∪{i}
J∪{I} = f I

J ≤
1

2
(uI − lI). ut

This lemma gives us the following valuable insights.

Corollary 1. The width of the intervals exponentially shrinks with the size of
the itemsets.

This remarkable fact is a strong indication that the number of large NDIs will be
very small. This reasoning will be supported by the results of the experiments.

Corollary 2. If I is a NDI, but it turns out that RI(J) equals the support
of I, then all supersets I ∪ {i} of I will be a DI, with rules RI∪{i}(J) and
RI∪{i}(J ∪ {i}).

We will use this observation to avoid checking all possible rules for I ∪ {i}. This
avoidance can be done in the following way: whenever we calculate bounds on
the support of an itemset I, we remember the lower and upper bound lI , uI . If I
is a NDI; i.e., lI 6= uI , then we will have to count its support. After we counted
the support, the tests support(I) = lI and support(I) = uI are performed. If one
of these two equalities obtains, we know that all supersets of I are derivable,
without having to calculate the bounds.

Corollary 3. If we know that I is a DI, and that rule RI(J) gives the exact
support of I, then RI∪{i}(J ∪ {i}) gives the exact support for I ∪ {i}.

Suppose that we want to build the entire set of frequent itemsets starting from
the concise representation. We can then use this observation to improve the
performance of deducing all supports. Suppose we need to deduce the support
of a set I, and of a superset J of I; instead of trying all rules to find the exact
support for J , we know in advance, because we already evaluated I, which rule
to choose. Hence, for any itemset which is known to be a DI, we only have to
compute a single deduction rule to know its exact support.
From Lemma 2, we easily obtain the following theorem, saying that the set

of NDIs is a concise representation. We omit the proof due to space limitations.

Theorem 3. For every database D, and every support threshold s, let NDI(D, s)
be the following set:

NDI(D, s) := {(I, support(I,D)) | lI 6= uI}.

NDI(D, s) is a concise representation for the frequent itemsets, and for each
itemset J not in NDI(D, s), we can decide whether J is frequent, and if J is
frequent, we can exactly derive its support from the information in NDI(D, s).



4 The NDI-Algorithm

Based on the results in the previous section, we propose a level-wise algorithm to
find all frequent NDIs. Since derivability is monotone, we can prune an itemset
if it is derivable. This gives the NDI-algorithm as shown below. The correctness
of the algorithm follows from the results in Lemma 2.

NDI(D,s)
i := 1; NDI := {}; C1 := {{i} | i ∈ I};
for all I in C1 do I.l := 0; I.u := |D|;
while Ci not empty do

Count the supports of all candidates in Ci in one pass over D;
Fi := {I ∈ Ci | support(I,D) ≥ s};.
NDI := NDI ∪ Fi;
Gen := {};
for all I ∈ Fi do

if support(I) 6= I.l and support(I) 6= I.u then
Gen := Gen ∪ {I};

PreCi+1 := AprioriGenerate(Gen);
Ci+1 := {};
for all J ∈ PreCi+1 do

Compute bounds [l, u] on support of J ;
if l 6= u then J.l := l; J.u := u;Ci+1 := Ci+1 ∪ {J};

i := i+ 1
end while
return NDI

Since evaluating all rules can be very cumbersome, in the experiments we show
what the effect is of only using a couple of rules. We will say that we use rules up
to depth k if we only evaluate the rules RJ (I) for |I − J | ≤ k. The experiments
show that in most cases, the gain of evaluating rules up to depth k instead of
up to depth k − 1 typically quickly decreases if k increases. Therefore, we can
conclude that in practice most pruning is done by the rules of limited depth.

5 Experiments

For our experiments, we implemented an optimized version of the Apriori al-
gorithm and the NDI algorithm described in the previous section. We per-
formed our experiments on several real-life datasets with different character-
istics, among which a dataset obtained from a Belgian retail market, which is a
sparse dataset of 41 337 transaction over 13 103 items. The second dataset was
the BMS-Webview-1 dataset donated by Z. Zheng et al. [16], containing 59 602
transactions over 497 items. The third dataset is the dense census-dataset as
available in the UCI KDD repository [9], which we transformed into a transac-
tion database by creating a different item for every attribute-value pair, resulting



in 32 562 transactions over 22 072 items. The results on all these datasets were
very similar and we will therefore only describe the results for the latter dataset.
Figure 2 shows the average width of the intervals computed for all candi-

date itemsets of size k. Naturally, the interval-width of the singleton candidate
itemsets is 32 562, and is not shown in the figure. In the second pass of the
NDI-algorithm, all candidate itemsets of size 2 are generated and their intervals
deduced. As can be seen, the average interval size of most candidate itemsets
of size 2 is 377. From then on, the interval sizes decrease exponentially as was
predicted by Corollary 1.

0

50

100

150

200

250

300

350

400

2 3 4 5 6 7 8

av
er

ag
e 

in
te

rv
al

 w
id

th

candidate itemsets of size k

NDI

Fig. 2. Average interval-width of candidate itemsets.

Figure 3 shows the size of the concise representation of all NDIs compared
to the total number of frequent patterns as generated by Apriori, for varying
minimal support thresholds. If this threshold was set to 0.1%, there exist 990 097
frequent patterns of which only 162 821 are non-derivable. Again this shows the
theoretical results obtained in the previous sections.
In the last experiment, we compared the strength of evaluating the deduction

rules up to a certain depth, and the time needed to generate all NDIs w.r.t. the
given depth. Figure 4 shows the results. On the x-axis, we show the depth up to
which rules are evaluated. We denoted the standard Apriori monotonicity check
by 0, although it is actually equivalent to the rules of depth 1. The reason for
this is that we also used the other optimizations described in Section 3. More
specifically, if the lower or upper bound of an itemset equals its actual support,
we can prune its supersets, which is denoted as depth 1 in this figure. The left
y-axis shows the number of NDIs w.r.t. the given depth and is represented by the
line ‘concise representation’. The line ‘NDI’ shows the time needed to generate
these NDIs. The time is shown on the right y-axis. The ‘NDI+DI’ line shows the
time needed to generate all NDIs plus the time needed to derive all DIs, resulting



0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1e+06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

nu
m

be
r 

of
 it

em
se

ts

support threshold (%)

NDI
Apriori

Fig. 3. Size of concise representation.

in all frequent patterns. As can be seen, the size of the concise representation
drops quickly only using the rules of depth 1 and 2. From there on, higher depths
result in a slight decrease of the number of NDIs. From depth 4 on, this size stays
the same, which is not that remarkable since the number of NDIs of these sizes
is also small. The time needed to generate these sets is best if the rules are only
evaluated up to depth 2. Still, the running time is almost always better than the
time needed to generate all frequent itemsets (depth 0), and is hardly higher for
higher depths. For higher depths, the needed time increases, which is due to the
number of rules that need to be evaluated. Also note that the total time required
for generating all NDIs and deriving all DIs is also better than generating all
frequent patterns at once, at depth 1,2,and 3. This is due to the fact that the
NDI algorithm has to perform less scans through the transaction database. For
larger databases this would also happen for the other depths, since the derivation
of all DIs requires no scan through the database at all.

6 Related Work

6.1 Concise Representations

In the literature, there exist already a number of concise representations for
frequent itemsets. The most important ones are closed itemsets, free itemsets,
and disjunction-free itemsets. We compare the different concise representations
with the NDI-representation.

Free sets [6] or Generators [11] An itemset I is called free if it has no subset
with the same support. We will denote the set of all frequent free itemsets with
FreqFree. In [6], the authors show that freeness is anti-monotone; the subset of
a free set must also be free. FreqFree itself is not a concise representation for



100000

200000

300000

400000

500000

600000

700000

800000

900000

1e+06

0 1 2 3 4 5 6 7 8
50

100

150

200

250

300

350

nu
m

be
r 

of
 N

D
Is

tim
e 

in
 s

ec
on

ds

rule depth

concise representation
NDI

NDI+DI

Fig. 4. Strength of deduction rules.

the frequent sets, unless if the set Border(FreqFree) := {I ⊆ I | ∀J ⊂ I : J ∈
FreqFree ∧ I /∈ FreqFree} is added [6]. We call the concise representation consist-
ing of these two sets ConFreqFree. Notice that free sets [6] and generators [13,
11] are the same.

Disjunction-free sets [7] or disjunction-free generators [11] Disjunction-free sets
are essentially an extension of free sets. A set I is called disjunction-free if
there does not exist two items i1, i2 in I such that support(I) = support(I −
{i1}) + support(I − {i2}) − support(I − {i1, i2}). This rule is in fact our rule
RI(I−{i1, i2}). Notice that free sets are a special case of this case, namely when
i1 = i2. We will denote the set of frequent disjunction-free sets by FreqDFree.
Again, disjunction-freeness is anti-monotone, and FreqDFree is not a concise rep-
resentation of the set of frequent itemsets, unless we add the border of FreqDFree.
We call the concise representation containing these two sets ConFreqDFree.

Closed itemsets [13] Another type of concise representation that received a lot
of attention in the literature [5, 14, 15] are the closed itemsets. They can be
introduced as follows: the closure of an itemset I is the largest superset of I
such that its support equals the support of I. This superset is unique and is
denoted by cl(I). An itemset is called closed if it equals its closure. We will
denote the set of all frequent closed itemsets by FreqClosed . In [13], the authors
show that FreqClosed is a concise representation for the frequent itemsets.
In the following proposition we give connections between the different concise

representations.

Proposition 1. For every dataset and support threshold, the following inequal-
ities are valid.

1. The set of frequent closed itemsets is always smaller or equal in cardinality
than the set of frequent free sets.



2. The set of NDIs is always a subset of ConFreqDFree.

Proof. 1. We first show that Closed = cl(Free).
⊆ Let C be a closed set. Let I be a smallest subsets of C such that

cl(I) = C. Suppose I is not a free set. Then there exist J ⊂ I such that
support(J) = support(I). This rule however implies that support(J) =
support(C). This is in contradiction with the minimality of I.

⊇ Trivial, since cl is idempotent.
This equality implies that cl is always a surjective function from Free to
Closed , and therefore, |Free| ≥ |Closed |.

2. Suppose I is not in ConFreqDFree. If I is not frequent, then the result is
trivially satisfied. Otherwise, this means that I is not a frequent free set,
and that there is at least one subset J of I that is also not a frequent free
set (otherwise I would be in the border of FreqDFree.) Therefore, there exist
i1, i2 ∈ J such that support(J) = support(J − {i1}) + support(J − {i2}) −
support(J −{i1, i2}) = σ(J, J −{i1, i2}). We now conclude, using Lemma 2,
that I is a derivable itemset, and thus not in NDI.

ut

Other possible inclusions between the described concise representations do not
satisfy, i.e., for some datasets and support thresholds we have |NDI| < |Closed |,
while other datasets and support thresholds have |Closed | < |NDI|. We omit
the proof of this due to space limitations. We should however mention that
even though FreqDFree is always a superset of NDI, in the experiments the
gain of evaluating the extra rules is often small. In many cases the reduction
of ConFreqDFree, which corresponds to evaluating rules up to depth 2 in our
framework, is almost as big as the reduction using the whole set of rules. Since
our rules are complete, this shows that additional gain is in many cases unlikely.

6.2 Counting Inference

MAXMINER [4] In MAXMINER, Bayardo uses the following rule to derive a
lower bound on the support of an itemset:

support(I ∪ {i}) ≤ support(I)−
∑

j∈T

drop(J, j)

with T = I − J , J ⊂ I, and drop(J, j) = support(J) − support(J ∪ {j}). This
derivation corresponds to repeated application of rules RI(I − {i1, i2}).

PASCAL [3] In their PASCAL-algorithm, Bastide et al. use counting inference
to avoid counting the support of all candidates. The rule they are using to
avoid counting is based on our rule RI(I −{i}). In fact the PASCAL-algorithm
corresponds to our algorithm when we only check rules up to depth 1, and do not
prune derivable sets. Instead of counting the derivable sets, we use the derived
support. Here the same remark as with the ConFreqDFree-representation applies;
although PASCAL does not use all rules, in many cases the performance comes
very close to evaluating all rules, showing that for these databases PASCAL is
nearly optimal.



References

1. R. Agrawal, T. Imilienski, and A. Swami. Mining association rules between sets
of items in large databases. In Proc. ACM SIGMOD Int. Conf. Management of
Data, pages 207–216, Washington, D.C., 1993.

2. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.
VLDB Int. Conf. Very Large Data Bases, pages 487–499, Santiago, Chile, 1994.

3. Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal. Mining frequent
patterns with counting inference. ACM SIGKDD Explorations, 2(2):66–74, 2000.

4. R. J. Bayardo. Efficiently mining long patterns from databases. In Proc. ACM
SIGMOD Int. Conf. Management of Data, pages 85–93, Seattle, Washington, 1998.

5. J.-F. Boulicaut and A. Bykowski. Frequent closures as a concise representation for
binary data mining. In Proc. PaKDD Pacific-Asia Conf. on Knowledge Discovery
and Data Mining, pages 62–73, 2000.

6. J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Approximation of frequency queries
by means of free-sets. In Proc. PKDD Int. Conf. Principles of Data Mining and
Knowledge Discovery, pages 75–85, 2000.

7. A. Bykowski and C. Rigotti. A condensed representation to find frequent patterns.
In Proc. PODS Int. Conf. Principles of Database Systems, 2001.

8. T. Calders. Deducing bounds on the frequency of itemsets. In EDBT Workshop
DTDM Database Techniques in Data Mining, 2002.

9. S. Hettich and S. D. Bay. The UCI KDD Archive. [http://kdd.ics.uci.edu]. Irvine,
CA: University of California, Department of Information and Computer Science,
1999.

10. D.E. Knuth. Fundamental Algorithms. Addison-Wesley, Reading, Massachusetts,
1997.

11. M. Kryszkiewicz. Concise representation of frequent patterns based on disjunction-
free generators. In Proc. IEEE Int. Conf. on Data Mining, pages 305–312, 2001.

12. H. Mannila and H. Toivonen. Multiple uses of frequent sets and condensed repre-
sentations. In Proc. KDD Int. Conf. Knowledge Discovery in Databases, 1996.

13. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed
itemsets for association rules. In Proc. ICDT Int. Conf. Database Theory, pages
398–416, 1999.

14. J. Pei, J. Han, and R. Mao. Closet: An efficient algorithm for mining frequent
closed itemsets. In W. Chen, J.F. Naughton, and P.A. Bernstein, editors, ACM
SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery,
Dallas, TX, 2000.

15. M.J. Zaki and C. Hsiao. ChARM: An efficient algorithm for closed association
rule mining. In Technical Report 99-10, Computer Science, Rensselaer Polytechnic
Institute, 1999.

16. Z. Zheng, R. Kohavi, and L. Mason. Real world performance of association rule
algorithms. In Proc. KDD Int. Conf. Knowledge Discovery in Databases, pages
401–406. ACM Press, 2001.


