
UNIVERSITEIT ANTWERPEN

Faculteit Wetenschappen

Informatica

Axiomatization and Deduction Rules
for the Frequency of Itemsets

Proefschrift voorgelegd tot het behalen van de graad van

doctor in de Wetenschappen aan de Universiteit Antwerpen

te verdedigen door

Toon CALDERS

Promotor: prof. dr. Jan Paredaens Antwerpen,

2003

Acknowledgements

I would like to thank the many people that contributed to the realization of
this thesis.

First of all, I would like to thank my advisor, Jan Paredaens, for his guid-
ance during my doctoral studies. Especially the opportunities he offered me
for making contacts with other interesting researchers are greatly appreci-
ated. Many thanks also to the other members of our research group ADReM
and the departement for creating a stimulating environment.

I am very much in debt of Jef Wijsen, who, especially in the beginning of
my doctoral research, was a great support. I thank him for patiently teaching
me the basics of scientific research.

Another important influence for me was Bart Goethals. I enjoyed very
much the many discussions we had. His questions, viewpoints, and insights
helped me a lot. Collaboration with him resulted in many of the results
covered in Chapter 4.

Other persons that supported me are Jan Van den Bussche, who regu-
larly helped me with his impressive knowledge of scientific literature, and
also Dirk Van Gucht, Raymond T. Ng, and Laks V.S. Lakshmanan. The
many short visits to Dirk Van Gucht in Bloomington resulted in the ma-
terial presented in Chapter 5. Also my three-month visit to Raymond T.
Ng and Laks V.S. Lakshmanan in Vancouver was great stimulation for my
scientific development. I am very grateful for this opportunity.

Also many thanks to my parents and family for their unconditional sup-
port and encouragement during the many years of my studies at the Univer-
sity of Antwerp.

Finally, I owe a lot to my wife An, who I would like to thank for the
constant encouragement and support during my doctoral research and the
writing of my thesis, day after day.

Thanks to all of you for making these four years into a positive and
stimulating experience.

i

Contents

1 Introduction 1
1.1 Preliminaries . 1
1.2 Subject of the Thesis . 3

2 Problem Description 9

2.1 Frequent Itemset Mining . 10

2.1.1 Frequent Itemset Problem 10

2.1.2 The Apriori Algorithm 12

2.1.3 Apriori Does Not Prune Perfectly 13

2.2 Problem FREQSAT . 14

2.2.1 Definition . 15
2.2.2 Computational Complexity 16

2.3 Graphical Interpretation of FREQSAT 21

2.4 Entailment of Frequency Constraints 23

2.5 Integer Bounds Versus Rational Bounds 27

2.6 Special Cases of FREQSAT 31

3 Lower and Upper Bounds in Isolation 35

3.1 Lower Bounds . 36
3.1.1 Systems of Frequent Sets 36

3.1.2 Systems of Rare Sets 39

3.1.3 Axioms for Complete Systems of Rare Sets 41

3.1.4 Computing Completions of Systems 52

3.1.5 Extending the Axiomatization to Sparse Systems . . . 60

3.1.6 Complexity of Deciding and Computing Completion . . 64

3.2 Upper Bounds . 67

3.2.1 System of Infrequent Sets 67

3.2.2 Axioms for Complete Systems of Infrequent Sets 67

3.3 Lower and Upper Bounds Together 69

iii

iv CONTENTS

4 Point Intervals 71
4.1 Deduction Rules . 72

4.1.1 Fraction and Extension 72
4.1.2 Inclusion-Exclusion Principle 73

4.1.3 Completeness of the Rules 74

4.2 Non-Derivable Itemsets . 78
4.3 The NDI-Algorithm . 81

4.4 Halving Intervals at Minimal Cost 82

4.5 Experiments . 84

4.5.1 Data set . 84
4.5.2 Results . 84

4.6 Support versus Frequency . 88

5 Generic Construction of Axioms 89
5.1 New Existence Condition . 89
5.2 Fourier-Motzkin Elimination 90
5.3 Construction of Axioms . 92
5.4 Entailment . 94
5.5 Examples . 95

5.5.1 2→ 3, 3 items . 95

5.5.2 2→ 3, 4 items . 96

5.5.3 2→ 4, 4 items . 97

6 Concise Representations 99

6.1 Definition . 100
6.2 Overview . 101

6.2.1 Free Sets Representations 102

6.2.2 Closed Sets Representation 105

6.2.3 Disjunction-Free Sets Representations 107

6.2.4 Generalized Disjunction-Free Representation 112

6.2.5 Non-Derivable Itemsets Representation 114

6.3 Extending the NDI-Representation 115

6.3.1 Rules of Limited Depth 116

6.3.2 NDI-representations of Limited Depth 117

6.3.3 Adding Assumptions to NDI-Representations 118

6.4 Unifying Framework . 124

6.4.1 k-Free Sets . 124
6.4.2 Closures of Representations 134

6.4.3 Relations Between the Representations 135

CONTENTS v

7 Related Work 137
7.1 Probabilistic Logics . 137

7.2 Combinatorics . 139
7.2.1 Approximate Inclusion-Exclusion 139

7.2.2 Fréchet Bounds . 140
7.2.3 Statistical Data Protection 140

7.3 Data Mining . 141

7.3.1 Counting Inference . 141

7.3.2 Interactive Association Rule Mining 142

7.3.3 Deduction . 142
7.3.4 Completeness . 143

7.4 Concise Representations . 143

8 Summary and Further Work 145

Bibliography 149

A Nederlandse samenvatting 157

A.1 Voorkennis . 157
A.2 Onderwerp van de thesis . 160

1
Introduction

1.1 Preliminaries

Advances in databases and technology make it possible to collect, store, and
retrieve huge collections of data. Virtually every corporation and organiza-
tion stores large amounts of data. However, not only the amount of data is
important, but also the ability to analyze it. Indeed, for a company it is of
vital importance to extract actionable knowledge and information from the
data. This challenge is the motivation for Data Mining [42, 44], a relatively
young research discipline on the edge of Databases , Statistics , and Machine
Learning. In [44], data mining is defined as follows.

Data Mining is the analysis of large observational datasets to find
unexpected relationships and to summarize the data in novel ways
that are understandable and useful to the data owner.

In this definition we identify the key phrases.

- Analysis. In data mining, one tries to identify important relations,
patterns, and trends in databases in order to better understand the
data. For this purpose, automatic tools are developed to help an analyst
to get a better insight in the data, and to turn bulk data into useful
knowledge.

- Large observational datasets. The datasets considered in data mining
applications are usually very large. This characteristic makes that data
mining algorithms must be highly efficient and scalable in order to
process large datasets.

- Unexpected relationships. Unlike in traditional database systems, in
data mining there is no such thing as an exact query that needs to be

1

2 CHAPTER 1. INTRODUCTION

answered. Ideally, the user only gives a type of relationship he or she
wants to find in the data, and the data mining algorithm selects the
actual patterns of that type that hold in the database.

- Summarize. Typically, the output of a data mining algorithm gives
general characteristics of the dataset. These characteristics offer a dif-
ferent, more concise, view on the database.

- Understandable and useful. The output of a data mining algorithm
is for a user only useful if it can be interpreted. This implies that
models with great predictive value, but that are not understandable for
humans, are not considered. We however stress that this requirement
is not supported by all data mining researchers.

Frequent Itemset Problem One of the most prominent problems in data
mining is the Frequent Itemset Problem [1]. The original context of frequent
itemset mining was market basket analysis. Consider a retail store selling
products from a set I. For every customer of the store, the set of products
purchased at once, called a transaction, is stored in a database D. Based
on this database an analyst wants to find out which sets of products are
frequently purchased together. This setting is formalized in the frequent
itemset problem. This problem is, given a threshold s and a database D,
find all subsets of I, called itemsets , that are included in at least s of the
sets in D. This number of transactions in the database D in which an itemset
I is included is called the support of I in D, and is denoted by support(I,D).
The frequency of an itemset I in D , denoted freq(I,D), is the support of
I in D divided by the number of transactions in D. Itemsets with support
higher than s are called (s-)frequent .

The frequent itemset problem is central in many data mining algorithms,
such as association rules [1], sequential patterns [3], classification [4], emerg-
ing patterns [25], etc. Since the introduction of the frequent itemset problem
in [1], many different approaches and algorithms have been proposed to find
them in large databases, especially in the context of association rule mining
[1, 2, 43]. For overviews of the different techniques, we refer to [43, 48, 81],
and [35, Ch. 2].

Despite its simple description, the frequent itemset problem is far from
trivial. It was shown in [39] that given a support threshold s, a number k,
and a transaction database D, the decision problem asking whether there is
a s-frequent itemset in D of size k is NP-complete.

1.2. SUBJECT OF THE THESIS 3

Monotonicity Principle All algorithms for mining frequent itemsets use
the following monotonicity principle [63].

Let I1 ⊆ I2 be two itemsets. In every transaction database D,
the frequency of I2 will be at most as high as the frequency of I1.

Many times this simple rule of deduction has been used successfully. The
best example is the well-known Apriori-algorithm [2]. To exploit monotonic-
ity as much as possible, the Apriori-algorithm starts with counting the sin-
gleton itemsets in a single pass over the database. In a second pass over the
database, only itemsets {i1, i2} such that {i1} and {i2} were found s-frequent
are considered. All other itemsets of size 2 are pruned , since, as we can derive
with the monotonicity principle, they cannot be s-frequent. In a third pass
over the database, the algorithm proceeds with the itemsets of size 3 that
only contain subsets of size 2 that are s-frequent. Thus, itemset {i1, i2, i3} is
counted only if {i1, i2}, {i1, i3}, and {i2, i3} are all s-frequent. This iteration
continues until no more new frequent itemsets are found. The search for fre-
quent itemsets by the Apriori-algorithm can thus be seen as an interleaving of
a counting phase and a meta phase. In the counting phase, the frequencies
of some predetermined itemsets, the so-called candidates are counted. In the
meta phase the results of the counting phase are evaluated. Based on the
monotonicity principle, some itemsets are a-priori —that is, without count-
ing them in the database— excluded. These observations also apply to other
frequent itemset mining algorithms such as DIC [11] and FPGrowth [43]. Since
the introduction of the Apriori-algorithm, many improvements have been pro-
posed. Most optimizations try to gain performance by reorganizing the input
data in a format that allows more efficient counting, or by minimizing the
number of scans over the database. Little work however went into improving
pruning.

1.2 Subject of the Thesis

Research Question of this Thesis Although the monotonicity of fre-
quency is commonly used, there is little previous work that tries to extend
the monotonicity rule. This thesis studies deduction rules, such as the mono-
tonicity principle, in general and on a theoretical basis; that is, without nec-
essarily focussing on a particular algorithm. The central research question
addressed is the following:

Given information about the frequency of some itemsets I1, . . . , In,

4 CHAPTER 1. INTRODUCTION

what information can be derived about the frequencies of other
itemsets?

Central in our approach to this problem is the notion of a frequency con-
straint . A frequency constraint is defined as an expression freq(I) ∈ [l, u],
with I an itemset, and l, u rational numbers between 0 and 1. A database D
is said to satisfy this constraint if freq(I,D) ∈ [l, u]. The given information is
now modelled as a finite set of such frequency constraints. A set of frequency
constraints C is said to imply the frequency constraint freq(I) ∈ [l, u] if every
database that satisfies all constraints in C, also satisfies freq(I) ∈ [l, u]. That
is, in every situation in which C holds, freq(I) ∈ [l, u] must be true as well.
For example, consider the set of frequency constraints

C = { freq({a}) ∈ [0.8, 0.9] , freq({b}) ∈ [0.6, 0.8] }

Because of the monotonicity principle, the frequency of {a, b} can never be
larger than the frequency of {b}. Since the frequency of {b} is at most 0.8,
freq({a, b}) ∈ [0, 0.8] is implied by C. Another important notion is tight
implication, that expresses that the interval [l, u] is the best interval we can
find for I, based on C. The best interval here means that for every smaller
interval [l′, u′], it is no longer true that freq(I) ∈ [l′, u′] is implied by C.
Consider again the set of frequency constraints C given above. Although
freq({a, b}) ∈ [0, 0.8] is implied by C, this implication is not tight. At least a
fraction 0.8 of the transactions contains item a, and a fraction of 0.6 contains
b. Therefore, there is an overlap of at least 0.4 between the transactions
containing a, and the transactions containing b. Hence, the frequency of
{a, b} must be in the interval [0.4, 0.8]. It can be shown that this interval
is tight by giving two databases D1, and D2, that both satisfy C, and with
freq({a, b},D1) = 0.4, and freq({a, b},D2) = 0.8. The following are examples
of such databases.

D1 =

TID Items

1 a
2 a
3 a, b
4 a, b
5 b

D2 =

TID Items

1 a, b
2 a, b
3 a, b
4 a, b
5

Suppose now for example that 0.4 is not a tight lower bound on the frequency
of {a, b}. Then there exists a number l, strictly larger than 0.4, such that
in every database that satisfies C, the frequency of {a, b} is at least l. This
is however in contradiction with freq({a, b},D1) = 0.4. Actually, D1 is a

1.2. SUBJECT OF THE THESIS 5

counterexample for all l strictly larger than 0.4. Databases such as D1 and
D2 will be called proof-databases . They will play a very important role in
the theory we develop.

A central problem studied in this thesis is the FREQSAT problem. It is
defined as the problem of deciding whether a set of frequency constraints is
satisfiable. We show that this problem is NP-complete.

Special Cases Because of the high complexity of FREQSAT, its usefulness
in practice is limited. Therefore, we study special cases that have lower
complexity, but that are still interesting from a practical, algorithmic point
of view. The following cases are discussed.

- Lower Bounds. Only lower bounds on the frequency of the itemsets are
considered; that is, we only use constraints of the form freq(I) ∈ [l, 1].
A set of such frequency constraints will be called a system of frequent
sets . A system is said to be complete if all information in it is tight. For
systems of frequent sets, FREQSAT is always satisfiable. We show that
completeness of a system of frequent sets can be decided in polynomial
time. We also describe three axioms, F1, F2, and F3 for complete
systems of frequent sets.

- Upper Bounds. We only allow constraints of the form freq(I) ∈ [0, u].
Again, FREQSAT is always satisfiable. Although this case seems very
similar to the previous, it is much simpler. For example, the complete-
ness of the system can be decided using only logarithmic space, and
only two simple axioms, IF1, and IF2 are required.

- Exact Frequencies, All Subsets. This is the most interesting case. In
this case, only bounds are derived on the frequency of an itemset of
which the exact frequency of all its subsets is known. In that case
the derivation of bounds can be done in polynomial time. This case
is very interesting because the assumed information is exactly that
information the Apriori-algorithm has for the candidate itemsets. Based
on the deduction rules in this case, derivable itemsets are introduced.
A set I is called derivable in a database D if its frequency is uniquely
determined by the frequencies of its subsets. An algorithm is developed
to find all non-derivable itemsets efficiently.

For each of the cases the complexity of the satisfiability problem and a com-
plete axiomatization is studied. We also show for each case how to calculate
the bounds on the frequency of the target itemsets.

6 CHAPTER 1. INTRODUCTION

Generic Technique We also give a generic technique that allows for de-
riving a complete set of axioms for specific cases. This method is based on
the elimination algorithm for systems of linear inequalities of Fourier and
Motzkin [67]. We show how a FREQSAT problem can be translated to a
system of linear inequalities. In this system we then eliminate some of the
variables. The resulting system will contain the axiomatization. For exam-
ple, suppose that we want to derive bounds on the frequency of the set {b},
based on the information that freq({a}) = fa, and freq({a, b}) = fab. Let
xa represent the transactions that have {a} as set of items, xb the ones that
have {b} as set of items, and xab the ones with {a, b} as set of items. The
(unknown) frequency of b is denoted by fb. We translate this situation as
the following linear inequalities:

(xa + xab = fa) ∧ (xab = fab) ∧ (xb + xab = fb)
∧ (xa ≥ 0) ∧ (xb ≥ 0) ∧ (xab ≥ 0) ∧ (xa + xb + xab ≤ 1) .

In this system we eliminate xa, xb, and xab. The elimination results in the
following, equivalent system:

(0 ≤ fa) ∧ (fa ≤ 1) ∧ (0 ≤ fb) ∧ (fb ≤ 1) ∧ (0 ≤ fab) ∧ (fab ≤ 1)
∧ (fab ≤ fa) ∧ (fab ≤ fb) ∧ (fab ≥ fa + fb − 1) .

Therefore, we can derive that the frequency of {b} is in the interval
[
max{0, fab} , min{1, 1 + fab − fa}

]
.

This interval is tight.

Applications of Deducing Frequencies: Concise Representations
Based on the deduction rules, we can identify redundancies in the set of
frequent itemsets. Especially the special case with exact frequencies is in-
teresting in this perspective. We show how we can use the deduction to
build concise representations [62] of the set of frequent itemsets. A concise
representation of the frequent itemsets is a subset that contains the same fre-
quency information. That is: from the concise representation we can derive
exactly which itemsets are frequent, and, if a set is frequent, then we can
derive its exact frequency from the representation. Because the goal of the
deduction rules we study is to derive frequencies as exact as possible, there is
a clear link between our work and concise representations. Other concise rep-
resentations proposed in the literature are free sets [9], closed sets [72, 8, 75],
and disjunction-free sets [12]. We show how these types of concise repre-
sentations can be expressed with the deduction rules we introduce. In this
way, our deduction rules and approach to concise representations becomes a
unifying framework for many proposals in the literature.

1.2. SUBJECT OF THE THESIS 7

Related Work In artificial intelligence literature, probabilistic logics are
studied intensively [41, 71]. The link with this thesis is that the frequency
of an itemset I can be seen as the probability that a randomly chosen trans-
action from the transaction database satisfies I; that is, we can consider the
transaction database as an underlying probability structure, and the itemsets
as conjunctions of basic events. In Chapter 7, we discuss related work in ar-
tificial intelligence in length. Especially the links with the probabilistic logic
of Nilsson [68], the logic for reasoning about probabilities of Fagin, Hailperin
and Megiddo [26], and the work of Lukasiewicz [60] receive special attention.

Also connections with data mining are discussed. Interesting there is
the MAXMINER algorithm of Bayardo [6], and the PASCAL algorithm of
Bastide et al. [5] for mining frequent itemsets. These two algorithms also use
some kind of deduction of bounds on the frequency of itemsets.

Another important body of related work concerns concise representations
[62]. The work about concise representations in Chapter 6 is compared to
other proposals such as free sets [9], closed sets [72, 8, 75], and disjunction-
free sets [12].

Connections between the deduction rules in Chapter 4 and combinato-
rial theory such as Bonferonni inequalities [7, 50, 31], and statistical data
protection [24] are explored as well.

Organization of the Thesis In Chapter 2, we give a formal definition
of the problems we study in this thesis and we discuss the complexity of
the FREQSAT problem. The special cases are studied in Chapter 3 (Lower
and upper bounds), and Chapter 4 (Exact frequencies). In Chapter 5, we
introduce the generic technique based on the elimination algorithm of Fourier
and Motzkin. We discuss the applications in Chapter 6. Related work is
discussed in Chapter 7. We conclude the thesis in Chapter 8 with a summary
of the results and interesting further work.

2
Problem Description

In this chapter we formally introduce the research question we discuss in this
thesis. First we will introduce the frequent itemset problem. In order to
illustrate the mechanisms of algorithms that solve this problem, we discuss
a stripped-down version of the Apriori-algorithm. This version will be used
throughout the thesis to illustrate the practical use of the theory we develop.

We then introduce the FREQSAT problem as an abstraction of the prun-
ing strategy in the frequent itemset mining algorithms. We show that this
problem is NP-complete. On the one hand, this NP-completeness result is
very important, because it is the motivation for the study of more restricted
problems with nicer algorithmic properties in the next chapters. On the
other hand, the proof of the NP-completeness gives a characterization of the
FREQSAT problem in terms of the satisfiability of a linear program. This
link with linear programming will be central in many of the problems we
discuss later on. Besides FREQSAT, we study the complexity of entailment
problems as well.

Furthermore, we discuss the difference between support and frequency.
In the thesis we use frequency constraints instead of support constraints.
Repercussions of this choice with respect to the results obtained are given.

We end the chapter with a practical example to illustrate the different
properties we will study in the next chapters.

Bibliographic Note The proof of theNP-completeness of FREQSAT will
be very similar to the proof of NP-completeness of probabilistic satisfiability
given in [34]. Although no straightforward reduction from the probabilistic
satisfiability problem to our problem seems to be available, many of the
techniques used in [34] apply directly to our problem.

For the study of the complexity of the entailment problems, we were
inspired by the systematic approach of Lukasiewicz in [61] to the complexity

9

10 CHAPTER 2. PROBLEM DESCRIPTION

of logical programming with conditional constraints. However, because in
our model conditional probabilities are not allowed, the completeness-results
presented in this chapter are stronger than the ones in [61].

Parts of this chapter were already published in [14].

2.1 Frequent Itemset Mining

Frequent Itemset Mining [1] was first mentioned in the context of market
basket analysis. Imagine a retail store selling products. For each customer,
at the check-out counter, all products purchased are scanned and stored as a
set in a database. Such a set of products is called a transaction. Based on this
data, analysts try to get a better understanding of the shopping behavior of
the customers. An important question in this context is which products are
frequently sold together. Such a popular set of products is called a frequent
itemset . The search for frequent itemsets is the basis of many data mining
problems. As such, it is one of the core problems in data mining. In the
literature, a whole spectrum of related problems has been studied, such as
finding the largest frequent set [6], the most surprising frequent set [77], the
most correlated set [66], etc. We concentrate however on the problem of
finding all frequent itemsets.

2.1.1 Frequent Itemset Problem

Definition 1 Let I be a finite set, called the set of items.

- A transaction over I is defined as a pair (tid, I) where I is a subset of
I and tid is a natural number, called the identifier.

- A transaction database D over I is a finite set of transactions over I,
in which every transaction has a different identifier.

- A subset I of I is called an itemset over I. We will say that a transac-
tion (tid, J) over I contains an itemset I over I, denoted I ⊆ (tid, J),
if I is a subset of J .

- The support of an itemset I over I in a transaction database D over
I, denoted support(I,D), is defined as the number of transactions T in
D that contain I.

2.1. FREQUENT ITEMSET MINING 11

- The frequency of an itemset I in a transaction database D, denoted
freq(I,D), is defined as

freq(I,D) =def

support(I,D)

|D|
.

2

In all that follows, I is the set of all items and D is the transaction
database. In the rest of the text we will often denote an itemset I by the list
of its elements; that is, {a, b, c} is denoted by abc.

One of the central problems in this thesis is the Frequent Itemset problem.

Problem 1 Frequent Itemsets (FSET(D,t)). Given a transaction data-
base D over I and a threshold t ∈ [0, 1], find all itemsets I such that
freq(I,D) ≥ t. 2

Example 1 Consider the following transaction database D over the set of
items {a, b, c, d}.

D =

TID Items

1 a, b, c
2 a, b, d
3 a, d
4 a, d

The support of the itemset {a, d} in D is 3 because
3 transactions contain both a and d; only the trans-
action with transaction identifier (TID) 1 does not
contain d. The answer to the frequent itemset prob-
lem FSET(D,0.5) is the set {φ, a, b, d, ab, ad}.

2

Even though the problem statement is very simple, the problem itself is
not. The following theorem, proved in [39], gives a nice illustration of the
inherent complexity of the frequent itemset problem.

Theorem 1 [39] Given a transaction database D, and a frequency threshold
t.

- Deciding whether FSET(D, t) contains an itemset I with |I| ≥ k for a
given k is NP-complete.

- Calculating the cardinality of FSET(D, t) is #P-hard 1.

1Let Q be a polynomially balanced binary relation. The counting problem associated
with Q is the following: Given x, how many y are there such that (x, y) ∈ Q? The output
required is an integer in binary. #P(number-P), is the class of all counting problems
associated with polynomially balanced, polynomial-time decidable relations.

12 CHAPTER 2. PROBLEM DESCRIPTION

Input: Database D over I, frequency threshold t.
Output: Set F of t-frequent itemsets in D.

(1) C1 := {{i} | i ∈ I};
(2) k := 1; F := {φ}
(3) while (Ck 6= {}) loop
(4) Count the frequencies of the sets in Ck in one pass over D;
(5) Lk := {I ∈ Ck | freq(I,D) ≥ t};
(6) F := F ∪ Lk;
(7) Ck+1 := {I ⊆ I | |I| = k + 1,∀J ⊂ I : J ∈ F};
(8) end-loop
(9) return F ;

Figure 2.1: Rough sketch of the Apriori algorithm

2.1.2 The Apriori Algorithm

One of the most important observations in frequent itemset mining is the
monotonicity principle [63]:

Let I1 ⊆ I2 be two itemsets. In every transaction database D,
the frequency of I2 will be at most as high as the frequency of I1.

Based on this principle we can prune the search space of the frequent itemset
problem. If we know that a certain itemset I1 is infrequent, then it is not
necessary to explore the space of all supersets of I1. This property is exploited
as much as possible by the Apriori-algorithm. In Figure 2.1, we give a rough
sketch of the algorithm. Most implementations of Apriori use advanced data
structures for speeding up steps (4) and (7). Reducing the number of loops
is a successful strategy as well. For our purpose however, we will restrict our
attention to the stripped-down version of Apriori presented in Figure 2.1.

Apriori starts with the singleton-itemsets as candidates in step (1). These
candidates are counted in a single scan over the database in step (4). The
candidates that turn out frequent are stored to be outputted in the end
(steps (5) and (6)). In step (7), new candidates are generated based on the
old candidates that turned out to be frequent. In the k-th loop, all itemsets of
size k that cannot be pruned using the monotonicity principle are considered
as candidates. That is, the new set of candidates will consist of all itemsets
of size k+1 such that there are no subsets that were infrequent. In this way
the monotonicity principle is exploited as much as possible.

2.1. FREQUENT ITEMSET MINING 13

A logical question to ask is whether the pruning performed in the Apriori-
algorithm is optimal; that is, given the information of the frequencies counted
in the previous loops, do we prune away as many candidates as possible? The
answer is negative as we show shortly. This question also applies to other
frequent set mining algorithms; given information about the frequencies of
some itemsets, what can we derive for candidate itemsets?

2.1.3 Apriori Does Not Prune Perfectly

We show that Apriori does not prune perfectly. The example also illustrates
the general technique we use later on in the proofs.

Consider the following example:
TID Items

1 a, b
2 a, c
3 b, c

freq(a,D) = freq(b,D) = freq(c,D) = 2
3

freq(ab,D) = freq(ac,D) = freq(bc,D) = 1
3

(2.1)

Suppose we are running the Apriori-algorithm with the minimal frequency
threshold set to 1

3
. The algorithm will start with counting the supports of

the singleton-itemsets C1 = {a, b, c}. Since they are all frequent, Apriori

will consider in its second loop the candidates C2 = {ab, ac, bc}. Again
all candidates are frequent, and thus, Apriori will count C3 = {abc} in its
third loop. However, the following simple observation shows that from the
frequencies counted so far, we can derive that abc is infrequent.

We encode the situation after the second loop as a linear programming
instance. A similar representation is also used in [18, 13, 14]. Let for each
itemset I, the fraction of I in D, denoted FI(D), be the fraction of transac-
tions having I as set of items, that is,

FI(D) =def

|{(tid, J) ∈ D | J = I}|

|D|
.

We will omit D when clear from the context. For every database satisfying

14 CHAPTER 2. PROBLEM DESCRIPTION

the frequencies in (2.1), the following equalities must hold:

F{} + Fa + Fb + Fc + Fab + Fac + Fbc + Fabc = 1 ({})

Fa + Fab + Fac + Fabc =
2
3

(a)

Fb + Fab + Fbc + Fabc =
2
3

(b)

Fc + Fac + Fbc + Fabc =
2
3

(c)

Fab + Fabc =
1
3

(ab)

Fac + Fabc =
1
3

(ac)

Fbc + Fabc =
1
3

(bc)

F{},Fa,Fb,Fc,Fac,Fbc,Fab,Fabc ≥ 0

(2.2)

From this system we derive:

Fa + Fac = 1
3

(a− ab)

Fa + Fab = 1
3

(a− ac)

Fb + Fbc = 1
3

(b− ab)

Fb + Fab = 1
3

(b− bc)

Fc + Fbc = 1
3

(c− ac)

Fc + Fac = 1
3

(c− bc)

(2.3)

The solution of system (2.3) is Fa = Fb = Fc = k,Fab = Fac = Fbc =
1
3
− k

with k a parameter. Because also F{}+Fa+Fb+Fc+Fab+Fac+Fbc+Fabc = 1,
we derive F{} + Fabc = 0. Since neither F{}, nor Fabc can be negative, Fabc

must be 0. Therefore, freq(abc,D) = 0, and we know a priori that abc cannot
be frequent. Nevertheless, Apriori does not prune abc. This example shows
that pruning can be improved beyond monotonicity.

2.2 Problem FREQSAT

In this section we define frequency constraints as a mean to model informa-
tion about frequencies. Deduction rules such as the monotonicity principle
are captured by implication of frequency constraints. Finally, we general-
ize the problem of pruning candidate itemsets in an algorithm-independent
way by the FREQSAT problem. The FREQSAT-problem is to decide, given

2.2. PROBLEM FREQSAT 15

information about frequencies, whether there exists a database that is con-
sistent with these frequencies. Considering the example above, we know that
the following FREQSAT problem is not satisfiable.

freq(a) = 2
3
, freq(b) = 2

3
, freq(c) = 2

3
,

freq(ab) = 1
3
, freq(ac) = 1

3
, freq(bc) = 1

3
,

freq(abc) ∈
[

1
3
, 1
]

Therefore, we can conclude that, given the information

{
freq(a) = 2

3
, freq(b) = 2

3
, freq(c) = 2

3
,

freq(ab) = 1
3
, freq(ac) = 1

3
, freq(bc) = 1

3

}
,

it is not possible that abc is frequent.

2.2.1 Definition

Definition 2

- A frequency constraint over I is an expression freq(I) ∈ [l, u], with I
an itemset over I, and l, u rational numbers 2 between 0 and 1.

- A transaction database D over I satisfies the constraint freq(I) ∈ [l, u],
denoted D |= freq(I) ∈ [l, u], if

l ≤ freq(I,D) ≤ u .

- A transaction database D satisfies a set of frequency constraints C,
denoted D |= C if D satisfies every expression in C.

- A set of frequency constraints C implies (or entails) a frequency con-
straint freq(I) ∈ [l, u], denoted C |= freq(I) ∈ [l, u], if every database
that satisfies C, also satisfies freq(I) ∈ [l, u].

- A set of frequency constraints C tightly implies (or tightly entails) a
frequency constraint freq(I) ∈ [l, u], denoted C |=tight freq(I) ∈ [l, u], if
C |= freq(I) ∈ [l, u], and if for every l′, u′ such that C |= freq(I) ∈ [l′, u′],
it is true that [l, u] ⊆ [l′, u′]. Hence, [l, u] is the smallest interval we
can derive for I based on C.

2We use rational numbers instead of real numbers because frequencies will always be
fractions. Also for computational issues rational numbers are more convenient because we
can easily represent them in binary.

16 CHAPTER 2. PROBLEM DESCRIPTION

2

An essential problem when studying the implication of frequency con-
straints is the following Frequency Satisfiability Problem.

Problem 2 Frequency Satisfiability (FREQSAT(C)) The FREQSAT-
problem is, given a finite set

C = {freq(Ij) ∈ [lj, uj] | j = 1 . . . n}

of frequency constraints, decide whether there exists a transaction database
D over I =

⋃n

j=1 Ij such that D satisfies C. 2

Notice that the sets I in the definition of the FREQSAT problem are
arbitrary; that is, we do not require I ⊆ I for a fixed set I. The reason for
this is that we do not want to fix the number of items nor limit the cardinality
of I when we study the computational complexity of the FREQSAT problem.

We will often use the expression “freq(I) = p” to denote the frequency
constraint “freq(I) ∈ [p, p]”.

Example 2 The FREQSAT-problem

{
freq(a) ∈

[1
2
, 1
]
, freq(bd) ∈

[1
4
,
1

2

]
, freq(abc) ∈

[
0,

1

2

]
, freq(bcd) ∈

[
0, 0
]}

is satisfiable; the transaction database D in Example 1 satisfies this instance.

The FREQSAT-problem

{
freq(a) ∈

[
0,

1

2

]
, freq(ab) ∈

[3
4
, 1
]}

is not satisfiable, since, as stated by the monotonicity rule, the frequency of
ab must always be smaller than or equal to the frequency of a. 2

2.2.2 Computational Complexity

We now study the complexity of the FREQSAT problem. We show that the
problem is NP-complete.

Theorem 2 The FREQSAT-problem is NP-complete.

2.2. PROBLEM FREQSAT 17

FREQSAT is in NP

We show that FREQSAT is in NP by reducing it to an instance of linear
programming [40, 67, 70] in which the number of equalities is polynomial in
the size of the FREQSAT-problem. As in Subsection 2.1.3, the notion of
fraction will be very important.

Definition 3 Let D be a transaction database and I be a subset of I. We
define the I-fraction of D, denoted FI(D) as

FI(D) =def

|{(tid, J) ∈ D | J = I}|

|D|
.

Hence, the I-fraction of D is the fraction of transactions having I as set of
items. If D is clear from the context, we will write FI . 2

This definition allows us to restate the frequency of an itemset I in terms of
the different fractions in the transaction database.

Lemma 1 Let D be a transaction database and I be an itemset over I.
Then the following holds.

freq(I,D) =
∑

I⊆J⊆I

FJ .

Proof
Straightforward. 2

Let C = {freq(I1) ∈ [l1, u1], . . . , freq(In) ∈ [ln, un]} be a FREQSAT prob-
lem. I denotes

⋃n

i=1 Ii. For each I ⊆ I we introduce a variable XI . XI

is associated with the fraction FI . A solution of the linear programming
instance we will introduce, specifies conditions that the fractions need to
satisfy. A solution to the linear program specifies a transaction database.

Example 3 Consider the following transaction database T of Example 1.

D =

TID Items

1 a, b, c
2 a, b, d
3 a, d
4 a, d

D is specified by Fabc = 1
4
,Fabd = 1

4
,Fad = 1

2
, and

for all other I, FI = 0.

2

18 CHAPTER 2. PROBLEM DESCRIPTION

The linear programming problem P1(C), associated with the FREQSAT
problem C, is specified as follows.

Does there exist a 2|I|-vector (Xφ, XA, . . . , XI) ≥ 0 such that the
following system P(C) of inequalities is satisfied?

P(C) =def

∑

I⊆I

XI = 1

li ≤
∑

Ii⊆I⊆I

XI ≤ ui ∀i = 1, . . . , n

Lemma 2 Let C be a set of frequency constraints over I. There exists
a transaction database D over I that satisfies C, if and only if P(C) has a
rational solution in the variables XI , I ∈ I.

Proof
If. Consider a solution XI = sI ,∀I ⊆ I of the system P(C). Let d be the
least common multiple of the denominators of the rational numbers sI . Let
now D be the transaction database that for all I ∈ I contains exactly d.sI
transactions with as set of items I. Because of the equality

∑

I⊆I

XI = 1 ,

the total number of transactions equals d. Therefore, for all I ⊆ I,

freq(I,D) =

∑
I⊆J⊆I d.sJ

d
=
∑

I⊆J⊆I

sJ .

Because for every frequency constraint freq(I) ∈ [l, u] the solution must also
satisfy the inequalities

l ≤
∑

I⊆J⊆I

sJ ≤ u ,

C is satisfied by D.
Only If. Let D be a transaction database that satisfies C. Then XI = FI(D),
for all I ⊆ I is a solution for P(C). 2

By adding 2n slack variables S1, . . . , Sn, S
′
1, . . . , S

′
n, we transform the lin-

ear programming problem P1 into the following, equivalent, problem P2.

2.2. PROBLEM FREQSAT 19

Does there exist a (2|I| + 2n)-vector

(Xφ, XA, . . . , XI , S1, . . . , Sn, S
′
1, . . . , S

′
n) ≥ 0

such that the following system of inequalities P ′(C) is satisfied?

P ′(C) =def

∑

I⊆I

XI = 1

∑

I⊇Ii

XI − Si = li ∀i = 1, . . . , n

∑

I⊇Ii

XI + S ′i = ui ∀i = 1, . . . , n

The number of equalities in the program is ne = (2n+1), and the number
of variables is nv = (2|I| + 2n). We now use a result in linear programming
theory [26], stating that, if an instance of linear programming with ne equal-
ities and nv variables has a positive solution, then it also has a solution with
at most nv nonzero variables.

Theorem 3 [26] If a system of r equalities and/or inequalities with integer
coefficients each of length at most l has a nonnegative solution, then it has
a nonnegative solution with at most r entries positive, and where the size of
each member of the solution is O(rl + r log(r)). 2

Thus, if the linear program P2 has a solution, then the non-zero variables
together with their values can serve as a succinct certificate [69, pp. 182].
Therefore, FREQSAT is in NP.

NP-Hardness of FREQSAT

The proof of NP-hardness is very much alike the one given for 2PSAT in
[34]. We will reduce graph 3-colorability [33] to FREQSAT.

In the proof, the instances of FREQSAT we consider will be very specific.
All intervals will be point-intervals [f, f]. This implies that even when we
restrict ourselves to cases in which we know the frequencies of the itemsets
I1, . . . , In exactly, the satisfiability problem is still NP-complete. Even more
surprising is the fact that we will only need sets of cardinality 1 or 2. Even
in this very restricted case, the satisfiability problem remains NP-complete.

Given a graph G = (V,E). G is said to be 3-colorable if there exists
a function c : V → {1, 2, 3} such that for each edge [u, v] in E we have
c(u) 6= c(v). Such a function is called a coloring of the graph G.

20 CHAPTER 2. PROBLEM DESCRIPTION

v v

v v

1 2

3 4

TID Items

1 B1, R2, G3, B4

2 R1, G2, B3, R4

3 G1, B2, R3, G4

Figure 2.2: Transaction database representing a solution to a 3-colorability
problem

Given such a graph we construct an instance C(G) of FREQSAT as fol-
lows. We introduce 3|V | items: for each vertex v ∈ V we consider the items
Bv, Rv, Gv. Bv (Rv, Gv) stand for “vertex v has color blue (red, green).” The
FREQSAT problem C(G) will contain the following frequency constraints.
For each vertex v:

freq({Bv}) =
1
3
, freq({Rv}) =

1
3
, freq({Gv}) =

1
3
,

freq({Bv, Rv}) = 0, freq({Bv, Gv}) = 0, freq({Rv, Gv}) = 0.
For each edge [u, v]:

freq({Bu, Bv}) = 0, freq({Ru, Rv}) = 0, freq({Gu, Gv}) = 0. This reduc-
tion can clearly be carried out in logarithmic space.

Suppose D is a transaction database satisfying this FREQSAT problem,
and T is a transaction in D. The first six conditions make sure that for each
vertex v, T contains exactly one of Bv, Rv, Gv. The last three conditions
make sure that for each pair of vertices u, v that are connected by an edge,
T cannot contain both Bu and Bv or both Ru and Rv or both Gu and Gv.
Therefore, every transaction represents a valid coloring of the graph G. Since
the empty transaction database is not a solution of C(G), it is true that if
the FREQSAT problem is satisfiable, then there exists a coloring. This
connection is illustrated in Figure 2.2.

Suppose G has a coloring c. We can construct the following transaction
T : T contains Bv if c(v) = 1, Rv if c(v) = 2, and Gv if c(v) = 3. Consider
now the colorings c′ and c′′ resulting from cyclically rearranging the colors
1, 2, 3 in the coloring c. Also for c′ and c′′ we can construct transactions T ′

and T ′′. The transaction database D = {T, T ′, T ′′} satisfies the FREQSAT
problem C(G).

Hence, the FREQSAT problem C(G) has a solution if and only if G has
a 3-coloring, and thus is FREQSAT NP-hard.

2.3. GRAPHICAL INTERPRETATION OF FREQSAT 21

Note In the proof we only need itemsets of cardinality 1 or 2, and point
intervals. We can even restrict further to sets of cardinality 2 only, by adding
two auxiliary items d1, d2. We add the frequency constraint freq({d1, d2}) =
1, and every frequency constraint freq({i}) = p in C is replaced by the con-
straint freq({i, d1}) = p. It is easy to see that the resulting FREQSAT
problem has a solution if and only if the original system C has one.

In the FREQSAT-problem, we restrict our frequency constraints to closed
intervals. This choice is merely out of convenience, rather than fundamental.
If we remove the requirement that the intervals are closed, the complexity
results still obtain.

2.3 Graphical Interpretation of FREQSAT

The restatement of the FREQSAT-problem in last section allows for a graph-
ical interpretation. Let C be the following set of frequency constraints.

C = {freq(I1) ∈ [l1, u1], . . . , freq(In) ∈ [ln, un]} .

Lemma 2 states that C is satisfiable if and only if the following system of
inequalities has a solution with all variables XI positive.

P(C) =def

∑

I⊆I

XI = 1

li ≤
∑

Ii⊆I⊆I

XI ≤ ui ∀i = 1, . . . , n

Such a solution then corresponds to a transaction database, namely, the one
with FI = XI , for all I ⊆ I.

It is with this system of linear inequalities P(C) that the graphical in-
terpretation is associated. Every possible solution (x{}, . . . , xI) of P(C) is in
fact a point in the d = 2|I|-dimensional space. We will call this d-dimensional
space the fraction-space. Some of the points in the fraction-space correspond
to a valid transaction database. These points are exactly the points in the
set

V =def

{
(X{}, . . . , XI)

∣∣∣
∑

I⊆I XI = 1,
XI ≥ 0 ∀I ⊆ I

}
.

V is a closed, convex and bounded subset of the d-dimensional space, since
it is the intersection of the hyperplane defined by

∑
I⊆I XI = 1, and the

d half-spaces XI ≥ 0. Let D(p) be the database that corresponds to the
point p(p{}, . . . , pI) ∈ V . The frequency of a set I in the database D(p) is

22 CHAPTER 2. PROBLEM DESCRIPTION

then
∑

I⊆J pJ . Hence, the databases D that satisfy a frequency constraint
freq(I) ∈ [l, u] correspond exactly with the points p in V with

∑
I⊆J pJ ∈

[l, u]. The set of points that satisfy freq(I) ∈ [l, u] is again convex, bounded,
and closed, since it is the intersection of V with the half-spaces defined by∑

I⊆J xJ ≥ l and
∑

I⊆J xJ ≤ u. The points that correspond to databases
that satisfy C are thus exactly the points in the intersection of all these sets
for each of the frequency constraints. Let V (C) denote the set of points that
correspond to databases that satisfy C. Also V (C) is closed, convex and
bounded.

Example 4 Consider the set of frequency constraints

C =

{
freq(a) ∈

[
1

2
, 1

]
, freq(ab) ∈

[
1

4
,
3

4

]}
.

The set of points that correspond with databases that satisfy C is depicted
in Figure 2.3. In this figure, only 3 of the 4 dimensions have been given.
This is because the coordinates in this fourth dimension that corresponds to
F{} are redundant in the set V . Indeed, every point p in V has coordinates

(1− pa − pb − pab, pa, pb, pab). 2

Suppose that we want to find the tight bounds on the frequency of an
itemset I, given a set of frequency constraints C. Since each database that
satisfies C corresponds to a point in V (C), and the frequency of I in D(p)
equals

∑
I⊆J pJ , we can conclude that the possible frequency values for I,

given C are exactly given by

F (I) =def

{∑

I⊆J

pJ | p ∈ V (C)

}
.

Thus, the set of possible values for the frequency of I is the image of the
continuous function f : p→

∑
I⊆J on the set V (C). It is well-known that the

image of a closed and bounded (and hence compact) set through a continuous
function is closed and bounded again. Therefore, F (I) is a compact set, and
thus an interval. Geometrically, the fact that F (I) must be an interval can
also be seen as follows. Because V (C) is closed and bounded, the infinum
and supremum of f on V (C) are also minimum and maximum. Thus, we can
find points p and q in V (C), such that f reaches its minimum and maximum
in respectively p and q. Let this minimum and maximum value of f be l and
u. Because V (C) is convex, every point αp + (1 − α)q with α ∈ [0, 1], must
be in V (C) as well. The frequency of I in αp+ (1− α)q equals

∑

I⊆J

(αpJ + (1− α)qJ) = α
∑

I⊆J

pJ + (1− α)
∑

I⊆J

qJ = αl + (1− α)u .

2.4. ENTAILMENT OF FREQUENCY CONSTRAINTS 23

Figure 2.3: Fraction space

Thus, every value between l and u is possible as frequency of I.

2.4 Entailment of Frequency Constraints

Besides the decision problem FREQSAT, we also study the entailment prob-
lems FREQENT and T-FREQENT. Instead of asking whether a set of fre-
quency constraints is satisfiable, in these problems we give a set of frequency
constraints C plus a target frequency constraint and we ask if the target
constraint is entailed (tightly entailed) by C.

Problem 3 FREQENT(C, freq(I) ∈ [l, u]) Given a set of frequency con-
straints C, and a target frequency constraint freq(I) ∈ [l, u]. Decide whether
C |= freq(I) ∈ [l, u]. 2

Problem 4 T-FREQENT(C, freq(I) ∈ [l, u]) Given a set of frequency
constraint C, and a frequency constraints freq(I) ∈ [l, u]. Decide whether
C |=tight freq(I) ∈ [l, u]. 2

24 CHAPTER 2. PROBLEM DESCRIPTION

The complexity of these two problems is very much related to the com-
plexity of FREQSAT. The following theorem gives the exact complexities of
FREQENT and T-FREQENT.

Theorem 4

- FREQENT is co-NP complete.

- T-FREQENT is DP-complete 3.

Proof
Let C be a set of frequency constraints. On the one hand,

C |= freq(I) ∈ [l, u]

if and only if C ∪ {freq(I) ∈ [0, l[} and C ∪ {freq(I) ∈]u, 1]} are both not
satisfiable. On the other hand, C is satisfiable if and only if it is not true
that

C |= freq({}) ∈ [1, 0] .

This implies that co-FREQSAT reduces to FREQENT, and FREQENT to
co-FREQSAT, which proofs the first statement.

For the second statement, suppose that

C |=tight freq(I) ∈ [l, u] .

This is possible if and only if

C |= freq(I) ∈ [l, u] , and co-NP
C ∪ {freq(I) = l} is satisfiable, and NP
C ∪ {freq(I) = u} is satisfiable. NP

Therefore, T-FREQENT is in DP.

We show that T-FREQENT in DP-hard by reducing the SAT-UNSAT
problem to it. The SAT-UNSAT problem is, given two formulas ϕ and ϕ′,
decide whether ϕ is satisfiable, and ϕ′ is unsatisfiable. That is, the answer is
“yes” if and only if ϕ is satisfiable and at the same time ϕ′ is unsatisfiable.
As in the traditional SAT-problem, ϕ and ϕ′ are both boolean expressions in
conjunctive normal form and each clause is a disjunction consisting of three
literals. It is well-known that SAT-UNSAT is DP-complete [69, pp. 413].

3DP [69, pp. 412] is the complexity class that contains all languages L such that there
exist languages L1 ∈ NP and L2 ∈ coNP with L = L1 ∩ L2. The D in DP stands for
Difference, since every language in DP is the set difference of two languages in NP.

2.4. ENTAILMENT OF FREQUENCY CONSTRAINTS 25

Let x1, . . . , xk be the variables in ϕ, and x
′
1, . . . , x

′
k′ be the variables in ϕ

′.
We assume without loss of generality that {x1, . . . , xk} and {x′1, . . . , x

′
k′} are

disjunct. Furthermore, let

ϕ =
n∧

i=1

(l1i ∨ l
2
i ∨ l

3
i) , and

ϕ′ =
n′∧

i=1

(l′
1
i ∨ l

′2
i ∨ l

′3
i) .

li and l′i are literals; that is, x or ¬x with x a variable. For each variable xi
(x′i) we introduce two items Xi and Xi (X

′
i and X ′

i). Also for each clause we
introduce one variable: C1, . . . , Cn for ϕ and C ′1, . . . , C

′
n′ for ϕ′. The set of

frequency constraints C consists of the following expressions.

(1) For each variable xi, i = 1 . . . k, the constraints

freq(Xi) =
1

2
, freq(Xi) =

1

2
, and freq(XiXi) = 0 .

(2) For each clause Ci = (l1i ∨ l
2
i ∨ l

3
i), i = 1 . . . n, the constraint

freq({Ci, L1
i , L

2
i , L

3
i }) = 0 .

Lji denotes Xp if lji = ¬xp, and is Xp if lji = xp.

(3) The constraint freq({C1, . . . , Cn}) =
1
2
.

(4) For each variable x′i, i = 1 . . . k′, the constraints

freq(X ′
i) =

1

2
, freq(X ′

i) =
1

2
, and freq(X ′

iX
′
i) = 0 .

(5) For each clause C ′i = (l′1i ∨ l
′2
i ∨ l

′3
i), i = 1 . . . n′, the constraint

freq({C ′i, L
′1
i , L

′2
i , L

′3
i }) = 0 .

L′ji denotes X
′
p if l′ji = ¬x

′
p, and is X ′

p if l′ji = x′p.

The total number of constraints is 3k + n+ 1 + 3k′ + n′. Now, it holds that
ϕ is satisfiable and ϕ′ is unsatisfiable if and only if

C |=tight freq({C
′
1, . . . , C

′
n′}) ∈ [0, 0] .

26 CHAPTER 2. PROBLEM DESCRIPTION

This can be seen as follows. We discuss the sets of constraints {(1), (2),
(3)}, and {(4), (5)} in isolation. We show that the constraints {(1), (2),
(3)} are satisfiable if and only if ϕ is. Suppose that ϕ is satisfiable. Let
V : {x1, . . . , xk} → {0, 1} be a valuation function that makes ϕ true. Let T
be the transaction with as set of items

{Xi, i = 1 . . . k | V (xi) = 1} ∪ {Xi, i = 1 . . . k | V (xi) = 0} ∪ {C1, . . . , Cn} .

Let T be the transaction with items

{Xi, i = 1 . . . k | V (xi) = 0} ∪ {Xi, i = 1 . . . k | V (xi) = 1} .

The database D = {T, T} satisfies the constraints (1), (2), and (3). Con-
ditions (1) and (3) are fulfilled, as can be seen easily. For condition (2),
consider one of the clauses Ci = (l1i ∨ l2i ∨ l3i) of ϕ. Because V is a satis-
fying assignment for ϕ, for at least one of the literals in Ci, V must assign
1. Without loss of generality we assume that V (l1i) = 1. Thus, T does not

contain L1
i , and therefore, T does not contain the itemset {Ci, L1

i , L
2
i , L

3
i }.

Also the other transaction T does not contain this itemset, since Ci is not in
T . Therefore, also (2) is satisfied.

For the other direction, suppose there exists a transaction database D
that satisfies C. Since the empty database is not a solution, D is not empty.
Because D |= freq({C1, . . . , Cn}) =

1
2
, there must be at least one transaction

T in D that contains {C1, . . . , Cn}. Because of (1), for each variable xi of ϕ,
T must contain exactly one of Xi and Xi. Let now V be the valuation that
assigns 1 to xi if and only if Xi ∈ T . We show that this assignment satisfies
ϕ. Let Ci = (l1i ∨ l

2
i ∨ l

3
i) be one of the clauses of ϕ. Because of (2), at least

one of L1
i , L

2
i , L

3
i is not in T . We assume without loss of generality that L1

i is
not in T . Thus, L1

i is in T , and hence V (l1i) = 1. Therefore, also V (Ci) = 1.
Because Ci was chosen arbitrarily, also V (ϕ) = 1, and thus is ϕ satisfiable.

For ϕ′ we can establish a similar reasoning. There exists a database that
satisfies (4) and (5), and at the same time has freq({C ′1, . . . , C

′
n′}) greater

than 0, if and only if ϕ′ is satisfiable. If ϕ is not satisfiable, then there ex-
ists a database that satisfies (4), and (5), but freq({C ′1, . . . , C

′
n′}) must be 0

(This statement can be proved with a similar reasoning as in the last para-
graph; every transaction that does contain {C ′1, . . . , C

′
n′} implies a satisfying

assignment for ϕ′).

We can now easily combine a database D1 satisfying (1), (2), (3) and a
database D2 satisfying (4), (5). Because the items used in (1), (2), and (3)
are completely disjunct of the ones used in (4), and (5), we can take the
“Cartesian product” of D1 and D2. That is, for each pair of transactions

2.5. INTEGER BOUNDS VERSUS RATIONAL BOUNDS 27

(T1, T2) with T1 ∈ D1, and T2 ∈ D2, there is one transaction T in D1 × D2

with as set of items the union of the sets of items of T1 and T2. D1×D2 does
satisfy C whenever D1 satisfies (1), (2), and (3), and D2 satisfies (4), (5).

We are now ready to proof that ϕ is satisfiable and ϕ′ is unsatisfiable if
and only if

C |=tight freq({C
′
1, . . . , C

′
n′}) ∈ [0, 0] .

We consider four cases.

ϕ satisfiable, ϕ′ satisfiable Since ϕ is satisfiable, there exists a database
D1 that satisfies (1), (2), and (3). Because ϕ′ is satisfiable, there exists
a database D2 that satisfies (4), (5), and has freq({C ′1, . . . , C

′
n′}) greater

than 0. Thus, D1 ×D2 satisfies C, and has freq({C ′1, . . . , C
′
n′}) greater

than 0. Therefore, the tight interval entailed for {C ′1, . . . , C
′
n′} is [0, s],

with s strictly greater than 0.

ϕ satisfiable, ϕ′ unsatisfiable The same remark as in the previous case
applies; since ϕ is satisfiable, there exists a database D1 that satisfies
(1), (2), and (3). Because ϕ′ is not satisfiable, every database D2 that
satisfies (4) and (5) has freq({C ′1, . . . , C

′
n′}) = 0. Such a database D2

exists, for example

D2 = {(1, {X ′
1, . . . , X

′
n′}), (2, {X ′

1, . . . , X
′
k′})} .

Therefore, the tight interval entailed for {C ′1, . . . , C
′
n′} is [0, 0].

ϕ unsatisfiable, ϕ′ satisfiable In this case there does not exist a database
D that satisfies C. Therefore, the tight interval entailed for the itemset
{C ′1, . . . , C

′
n′} is the empty interval [1, 0].

ϕ unsatisfiable, ϕ′ unsatisfiable The same as the previous case; the tight
interval entailed for {C ′1, . . . , C

′
n′} is the empty interval [1, 0].

Thus, from this case study we derive that the only case in which [0, 0] is the
tight interval entailed for itemset {C ′1, . . . , C

′
n′} is indeed when ϕ is satisfi-

able, and ϕ′ is unsatisfiable. 2

2.5 Integer Bounds Versus Rational Bounds

In the FREQSAT problem we use the frequency of the itemsets in order to
model information, instead of the support. In this section we discuss the dif-
ferences between support and frequency. Even though it seems that support

28 CHAPTER 2. PROBLEM DESCRIPTION

constraints and frequency constraints are very similar, we show that there
is no straightforward reduction between them. The problem with support
constraints differs a lot from and seems more complex than the equivalent
problem with frequencies.

First we define support constraints and implication of support constraints
in a similar way as we defined frequency constraints and implication.

Definition 4

- A support constraint over I is an expression support(I) ∈ [L,U], with
I an itemset over I, and L,U positive integers.

- A transaction database D over I satisfies support(I) ∈ [L,U], denoted
D |= support(I) ∈ [L,U], if

L ≤ support(I,D) ≤ U .

- A transaction database D satisfies a set of support constraints S, de-
noted D |= S, if D satisfies every constraint in S.

- A set of support constraints S implies a support constraint support(I) ∈
[L,U], denoted S |= support(I) ∈ [L,U], if every database that satisfies
S, also satisfies support(I) ∈ [L,U].

- A set of support constraints S tightly implies a frequency constraint
support(I) ∈ [L,U], denoted S |=tight support(I) ∈ [L,U], if S |=
support(I) ∈ [L,U], and if for every L′, U ′ such that S |= support(I) ∈
[L′, U ′], it is true that [L,U] ⊆ [L′, U ′]. Hence, [L,U] is the smallest
interval we can derive for I based on S. 2

Problem 5 Support Satisfiability (SUPPSAT(S)) The SUPPSAT-pro-
blem is, given a finite set

S = {support(Ij) ∈ [Lj, Uj] | j = 1 . . . n}

of support constraints, decide whether there exists a transaction database D
over I =

⋃n

i=1 Ii such that D satisfies S. 2

We can find a similar representation as a linear system of inequalities
for the SUPPSAT problem as we had for the FREQSAT problem. Only,
this problem is an integer linear programming problem. It is well-known

2.5. INTEGER BOUNDS VERSUS RATIONAL BOUNDS 29

that integer programming is more complex than linear programming (NP-
complete versus P-complete) [69].

We illustrate the difference between supports and frequencies with an
example. Consider the following set of frequency expressions:

C =

{
freq(ab) =

1

2
, freq(ac) =

1

2
, freq(bc) =

1

2

}

A straightforward “reduction” to a SUPPSAT problem would be the follow-
ing:

S =

{
support({}) = 2, support(ab) = 1,
support(ac) = 1, support(bc) = 1

}

However,

C |=tight freq(abc) ∈

[
1

4
,
1

2

]
,

while
S |=tight support(abc) = 1 .

The following database proves that freq(abc) = 1
4
is indeed possible:

TID Items

1 a, b
2 a, c
3 b, c
4 a, b, c

The problem in a reduction from FREQSAT to SUPPSAT is that we
need to set an upper bound on the number of transactions. As the fol-
lowing example shows, the least common multiplier of the denominators of
the FREQSAT-problem is not a good choice. Let the set of items I be
{a, b, c, d, e, f, g, h, i, j, k, l}.

C2 =

freq(ab) = freq(ac) = freq(bc) = 1
2

freq(de) = freq(df) = freq(ef) = 1
2

freq(gh) = freq(gi) = freq(hi) = 1
2

freq(jk) = freq(jl) = freq(kl) = 1
2

freq(abc def) = 0 freq(abc ghi) = 0

freq(abc jkl) = 0 freq(def ghi) = 0

freq(def jkl) = 0 freq(ghi jkl) = 0

30 CHAPTER 2. PROBLEM DESCRIPTION

Notice that, as argued above,
{
freq(ab) =

1

2
, freq(ac) =

1

2
, freq(bc) =

1

2

}
|=tight freq(abc) ∈

[
1

4
,
1

2

]

Similarly, we get C2 |=tight freq(def) ∈
[

1
4
, 1

2

]
, C2 |=tight freq(ghi) ∈

[
1
4
, 1

2

]
,

and C2 |=tight freq(jkl) ∈
[

1
4
, 1

2

]
. Furthermore, because no two of the four sets

abc, def , ghi, and jkl can appear in the same transaction, C can never be
satisfied by a database with 2 transactions. It is however satisfiable with 4
transactions, as the following example shows:

TID Items

1 a, b, c, d, f, g, i, j, k
2 a, b, d, e, f, g, h, k, l
3 a, c, d, e, g, h, i, j, l
4 b, c, e, f, h, i, j, k, l

Theorem 5 SUPPSAT is in PSPACE.

Proof
Let S = {support(Ij) ∈ [Lj, Uj] | j = 1 . . . n} be a SUPPSAT problem.
Suppose that there exists a database D that satisfies S. Remove from D all
transactions that do not contain any of the sets Ij, j = 1 . . . n. The resulting
database still satisfies S, since the transactions that were removed had no
influence on the support of the itemsets in S. Furthermore, the resulting
database has at most

∑
j=1...n Uj transactions. Therefore, S is satisfiable if

and only if there exists a database D with at most
∑

j=1...n Uj transactions
that satisfies S.

We show a non-deterministic procedure to decide the satisfiability of S
that uses at most polynomial space in the length of S. In this way we show
that SUPPSAT is in NPSPACE, and thus by Savitch’s Theorem [69, pp.
149-150], also in PSPACE.

We will “guess” a database D. First we guess the number of transactions
d. This number is bounded above by

∑
j=1...n Uj, and can thus be represented

using polynomial space in the input. For each set Ij, j = 1 . . . n, we keep a
counter. In the beginning these counters are all initialized to 0. We then guess
the transactions one by one, reusing space. After we guess a transaction, the
counters are updated. The counter associated with set Ij, j = 1 . . . n is incre-
mented by 1 if Ij is contained in the generated transaction. By maintaining
one more counter, we make sure that we stop generating transactions after
the d-th transaction was generated. Then we check whether the supports we
counted are consistent with the support constrains in the input. If this is

2.6. SPECIAL CASES OF FREQSAT 31

TID Items

p|M| − 1

1
...

p|M| − 1

I
...
I

|M|

p|M|
...

(p+ 1)|M|

M1
...
Mn

(q − p− 1)|M|+ 1

(p+ 1)|M|+ 1
...

q|M|

φ
...
φ

q|M|

Figure 2.4: Database D constructed in Lemma 3.

the case, we answer “yes”, otherwise “no”. It is clear that if there exists a
database that satisfies S, this database will be generated in at least one of
the execution paths of this non-deterministic procedure. Furthermore, the
space requirement is polynomial, since the maximum number on a counter
is bounded by

∑
j=1...n Uj, which has a representation that is polynomial in

the input. The total number of counters is the number of sets in the input,
plus two extra. The generated transactions have linear length in the input. 2

2.6 Special Cases of FREQSAT

TheNP-completeness of the FREQSAT problem motivates the study of spe-
cial cases that are interesting in practice and have better complexity proper-
ties.

The most straightforward example is that we only consider constraints of
the form freq(I) ∈ [t, 1] and freq(I) ∈ [0, t[, for a fixed threshold t between
0 and 1. freq(I) ∈ [t, 1] represents the information that I is frequent, and
freq(I) ∈ [0, t[that I is infrequent. We discuss this problem here to illustrate
the different properties of the special cases we will study in later chapters.
We discuss the satisfiability problem, an axiomatization, and the complexity
of entailment.

First, we prove a lemma that is important for this example.

Lemma 3 Let F be a set of itemsets over I, and let t be a rational number
larger than or equal to 0, and strictly smaller than 1. There exists a database

32 CHAPTER 2. PROBLEM DESCRIPTION

D over I such that FSET(D, t) = F if and only if F is downward closed 4.

Proof
If. LetM be the maximal elements of F w.r.t. the subset ordering. Suppose
t = p

q
. We construct a database D with q|M| transactions. This construction

is illustrated in Figure 2.4. D contains p|M| − 1 transactions that contain
all items of I. Furthermore, D contains for each set I ∈M, one transaction
with I as set of items. D also contains (q − p)|M| + 1 − |M| transactions
with {} as set of items. Notice that the number of transactions was chosen
in such a way that this number (q− p)|M|+1−|M| is always positive. The
total number of transactions is

p|M| − 1 + |M|+ (q − p)|M|+ 1− |M| = q|M| .

For every set I ∈M, the frequency of I equals

freq(I,D) =
(p|M| − 1) + 1

q|M|
=

p

q
= t .

Because of the monotonicity principle, for all the other sets in F it is also
true that the frequency is at least t. On the other hand, for a set not in F ,
there are only p|M| − 1 transactions that contain this set.
Only If. Because of the monotonicity principle, FSET(D, t) must be down-
ward closed. 2

Notice that in the lemma we require that t is not 1. The case t = 1 is
special. Indeed, suppose that I1 and I2 both have frequency 1, then also I1∪I2
has frequency 1. Therefore, for every database D, FSET(D, 1) is downward
closed and closed under union. In the rest of this section we assume that t
is strictly smaller than 1.

In the special cases we study, we always look for a sound and complete
set of axioms. These axioms allow us to better understand the interactions
between the frequencies. They will also lead to deduction rules we can use
to derive bounds on target itemsets. We also always study the complexity of
computing bounds on a target itemset.

For the special case presented here, we get the following two axioms.

A1 If I ⊆ J then
freq(I) ∈ [0, t[|= freq(J) ∈ [0, t[

4A set of sets F is said to be downward closed if for every two sets I1 ⊆ I2 it holds
that I2 ∈ F implies that I1 ∈ F . That is, whenever F contains a set I, it must contain
all subsets of I as well.

2.6. SPECIAL CASES OF FREQSAT 33

A2 If I ⊆ J then
freq(J) ∈ [t, 1] |= freq(I) ∈ [t, 1]

The soundness of these two axioms follows from the monotonicity princi-
ple. The completeness follows from Lemma 3. In this very specific case the
monotonicity rule is complete.

The axioms can be used as deduction rules to derive information from a
set of constraints. For example, using axiom A1, we can derive freq(ab) ∈
[t, 1] from {freq(abc) ∈ [t, 1]}. In every case we will show how to apply the
axioms (in which order e.g.) to derive the intervals that are tightly implied,
in a finite number of steps.

Although such a procedure, based on a finite number of applications of
the deduction rules, is an effective method to derive bounds on the frequency,
it is not always the best method. In many cases it is more efficient to solve
the linear systems associated with the deduction problems. In this respect
we study the computational complexity of the different cases in detail.

The following table summarizes all special cases studied in this thesis.

Case Name Form of the set of constraints C
Chapter 2

1. General {freq(I1) ∈ [l1, u1], . . . , freq(In) ∈ [ln, un]}
2. Threshold t {freq(I1) ∈ [0, t[, . . . , freq(Ik) ∈ [0, t[,

freq(Ik+1) ∈ [t, 1], . . . , freq(In) ∈ [t, 1]}

Chapter 3
3. Lower Bounds

Systems of Frequent Sets {freq(I) ∈ [l, 1], ∀I ⊆ I}
Sparse Systems of FS {freq(I1) ∈ [l1, 1], . . . , freq(In) ∈ [ln, 1]}

4. Upper Bounds {freq(I1) ∈ [0, u1], . . . , freq(In) ∈ [0, un]}

Chapter 4
5. Exact Frequency, {freq(J) ∈ [fJ , fJ], ∀J ⊂ I}

All subsets of I

3
Lower and Upper Bounds in Iso-
lation

In this chapter we consider lower and upper bounds in isolation. For the
lower-bound case, we only consider constraints of the form freq(I) ∈ [l, 1]
with l a rational number. Such an expression will be called a Frequent Set
Expression, and will be denoted by freq(I) ≥ l. Of course, a set of such
expressions is always satisfiable. In this chapter we consider the notion of
completeness of a set of frequent set expressions. A set of frequent set expres-
sions C is complete if it contains all information that is implied by it. That is,
for each expression freq(I) ≥ l in C, it must be that C |=tight freq(I) ≥ l. We
give an axiomatization for complete sets of frequent set expressions. In a first
phase we only consider sets C in which for each subset I of I, one expression
freq(I) ≥ l has been given. Later on we also consider sparse systems , that
is, sets of constraints that do not necessarily for every itemset contain an
expression. We show that deciding completeness can be done in polynomial
time.

For the upper-bound case we consider expressions of the form freq(I) ∈
[0, u] with u a rational number. Such an expression will be called an Infre-
quent Set Expression. Also for this case we describe an axiomatization for
complete systems. This axiomatization however, is much simpler than the
one for frequent set expressions. Because of this, the complexity of deciding
completeness for such systems is lower (only logarithmic space).

Finally, we show that in general a combination of the axioms for the lower
bounds, together with the axioms for the upper bounds do not provide us
with a complete axiomatization for the general case.

Bibliographic Note We already published large parts of this chapter
in [17, 18, 19].

35

36 CHAPTER 3. LOWER AND UPPER BOUNDS IN ISOLATION

3.1 Lower Bounds

3.1.1 Systems of Frequent Sets

Complete Systems

We introduce a system of frequent sets as a full collection of frequent set
expressions. Logical implication and completeness of systems are as defined
for sets of frequency constraints. In this chapter we will often use freq(I) ≥ l
to denote the frequency constraint freq(I) ∈ [l, 1].

Definition 5 Let I = {i1, . . . , in} be a set of items.

- A system of frequent sets over I is a collection

{freq(I) ≥ pI | I ⊆ I}

of frequent set expressions, with one expression for each I ⊆ I.

- A system of frequent sets S = {freq(I) ≥ pI | I ⊆ I} is complete if for
each freq(I) ≥ p logically implied by S, p ≤ pI holds. Hence, for every
I ⊆ I, S |=tight freq(I) ≥ pI .

2

Proof-Databases

Very important in the completeness proof of the axiomatization are the so-
called proof-databases .

Definition 6 Let S = {freq(I) ≥ lI | I ⊆ I} be a system of frequent sets,
and J ⊆ I. A transaction database D over I is called a proof-database for
J in S if D |= S and freq(J,D) = lJ . 2

In order to show that a certain system S = {freq(I) ≥ lI | I ⊆ I} is complete,
we need to construct a proof-database DI for every I ⊆ I in S. Suppose
S |= freq(I) ≥ l. Then freq(I,DI) ≥ l, since DI satisfies S. Hence, l ≤ lI .
Thus, a proof-database for I in S shows that the frequency lI given in the
system S cannot be improved.1

1Observe the similarities with Armstrong relations in functional dependency theory
[27].

3.1. LOWER BOUNDS 37

Database D
TID Items

1 a,c,e,f
2 a,c,e,f
3 b,d,e
4 a,b,c,f
5 a,d,f
6 b,d,e,f
7 a,b,d,e,f
8 c,f
9 a,b,c,e
10 a,c,f

freq(a) = 0.7
freq(b) = 0.5
freq(ab) = 0.3
freq(def) = 0.2
freq(ef) = 0.4

Figure 3.1: A transaction database

Example 5 Let I = {a, b, c, d, e, f}. Consider the following system:

S = {freq(I) ≥ lI | I ⊆ I} ,

where la = 0.7, lb = 0.5, lab = 0.3, ldef = 0.2, and lI = 0 for all other itemsets
I. The database D in Fig. 3.1 satisfies S. S is not complete, because in every
database satisfying freq(def) ≥ 0.2, the frequency of de must be at least
0.2, and S contains freq(de) ≥ 0. Furthermore, S does not logically imply
freq(ef) ≥ 0.5, since D satisfies S, and D does not satisfy freq(ef) ≥ 0.5.

Consider the following system over I = {a, b, c}:

{
freq(φ) ≥ 1, freq(a) ≥ 0.6, freq(b) ≥ 0.8, freq(c) ≥ 0.8,
freq(ab) ≥ 0.6, freq(ac) ≥ 0.4 freq(bc) ≥ 0.6, freq(abc) ≥ 0.4

}

This system is complete. In Fig. 3.2, a possible set of proof-databases is
given. 2

Notice that when a system is complete, it is not necessary that there exists
one database that is a proof-database for all itemsets at once. Consider for
example the following system:

{
freq(φ) ≥ 1, freq(a) ≥ 0.5, freq(b) ≥ 0.5, freq(c) ≥ 0.1,
freq(ab) ≥ 0, freq(ac) ≥ 0, freq(bc) ≥ 0, freq(abc) ≥ 0

}

This system is complete. However, we will never find a database in which the
following six conditions are simultaneously true: freq(a) = 0.5, freq(b) = 0.5,

38 CHAPTER 3. LOWER AND UPPER BOUNDS IN ISOLATION

Proof-DB for
b, c, bc, abc
TID Items

1 a,b,c
2 a,b,c
3 a,b
4 a,c
5 b,c

Proof-DB for
a, ab, ac

TID Items

1 a,b,c
2 a,b,c
3 a,b
4 b,c
5 b,c

abc≥0.4

ab≥0.6 ac≥0.4 bc≥0.6

a≥0.6 b≥0.8 c≥0.8

φ≥1

"
""

b
bb

b
bb

"
""

"
""

b
bb

"
""

b
bb

Figure 3.2: Proof-databases for a system of frequent sets

freq(c) = 0.1, freq(ab) = 0, freq(ac) = 0, and freq(bc) = 0, because due to
freq(a) = 0.5, freq(b) = 0.5, and freq(ab) = 0, every transaction contains a
or b. So, every transaction containing c also contains either a or b, and thus
violates either freq(ac) = 0, or freq(bc) = 0.

Completion

When a system S is not complete, we can improve the system. Suppose
S = {freq(I) ≥ lI | I ⊆ I} is not complete. Then there exists a frequent set
expression freq(I) ≥ l′I with l′I > lI that is logically implied by S. We can
improve S by replacing freq(I) ≥ lI with freq(I) ≥ l′I . The next theorem
states that for every system S, there exists a unique complete system C(S),
logically implied by S.

Theorem 6 Let S be a system of frequent sets. There exists a unique sys-
tem C(S), the completion of S, such that S |= C(S), and C(S) is a complete
system.

Proof
Let LI = {lI | S |= freq(I) ≥ lI}. LI always contains its own supremum:
suppose a database D satisfies S. Let l be freq(I,D). D satisfies S, hence
for all lI ∈ LI , l ≥ lI holds, and therefore l ≥ sup(LI) holds. Thus,
every database satisfying S, also satisfies freq(I) ≥ sup(LI), and there-
fore S |= freq(I) ≥ sup(LI). It is now straightforward that the system
{freq(I) ≥ sup(LI) | I ⊆ I} is the unique completion of S. 2

3.1. LOWER BOUNDS 39

Example 6 Let I = {a, b, c}. The unique completion of the system

S1 =

freq(φ) ≥ 0.8, freq(a) ≥ 0.6, freq(b) ≥ 0.8,
freq(c) ≥ 0.8, freq(ab) ≥ 0.6, freq(ac) ≥ 0.4,
freq(bc) ≥ 0.4, freq(abc) ≥ 0.4

is the system

S2 =

freq(φ) ≥ 1, freq(a) ≥ 0.6, freq(b) ≥ 0.8,
freq(c) ≥ 0.8, freq(ab) ≥ 0.6, freq(ac) ≥ 0.4,
freq(bc) ≥ 0.6, freq(abc) ≥ 0.4

freq(bc) ≥ 0.6 is implied by S1, since there is an overlap of at least 0.6
between the transactions containing b and the transactions containing c. The
completeness of S2 has already been shown in Example 5. 2

3.1.2 Systems of Rare Sets

Before we go into an axiomatization for complete systems of frequent sets, we
first introduce rare sets. The introduction of rare sets simplifies the notations
in subsequent proofs and will make reasoning easier.

Definition 7

- Let D be a transaction database over I. The rareness of an itemset
I ⊆ I in D, denoted rare(I,D), is the fraction of transactions in D
such that at least one of the items in I is absent. That is,

rare(I,D) =def

|{(tid, J) ∈ D | I − J 6= φ}|

|D|
.

- A rare set expression over I is an expression rare(I) ≤ pI with I ⊆ I
and pI a rational number with 0 ≤ pI ≤ 1.

- A database D over I satisfies rare(I) ≤ pI , denoted D |= rare(I) ≤ pI ,
if rare(I,D) ≤ pI . Hence, itemset I has rareness at most pI .

- A system of rare sets over I is a collection {rare(I) ≤ pI | I ⊆ I} of
rare set expressions, with one expression for each I ⊆ I.

- A database D over I satisfies the system S = {rare(I) ≤ pI | I ⊆ I},
denoted D |= S, if D satisfies all rare(I) ≤ pI in S.

40 CHAPTER 3. LOWER AND UPPER BOUNDS IN ISOLATION

- A system of rare sets S logically implies rare(I) ≤ p, denoted S |=
rare(I) ≤ p if every database that satisfies S also satisfies rare(I) ≤
p. System S1 logically implies system S2, denoted S1 |= S2, if every
rare(I) ≤ p in S2 is logically implied by S1.

- A system of rare sets S = {rare(I) ≤ pI | I ∈ I} is complete if for
each rare(I) ≤ p logically implied by S, pI ≤ p holds.

2

Example 7 In Fig. 3.1, the database D satisfies rare(a) ≤ 0.4, because
fewer than 0.4 of the transactions have 0 in a. D does not satisfy rare(b) ≤
0.3. Let I = {a, b}. The system

{rare(φ) ≤ 0.4, rare(a) ≤ 0.3, rare(b) ≤ 0.4, rare(ab) ≤ 0.8}

is not complete. The unique completion of this system is

{rare(φ) ≤ 0, rare(a) ≤ 0.3, rare(b) ≤ 0.4, rare(ab) ≤ 0.7} .

2

The next proposition connects rare sets with frequent sets. The connec-
tion between the two is straightforward. Indeed: the transactions that miss
one of the items in I are exact the complement of the transactions having all
items of I.

Proposition 1 For every database D over I and every subset I of I holds
that

- freq(I,D) + rare(I,D) = 1.

- D satisfies rare(I) ≤ pI if and only if D satisfies freq(I) ≥ 1− pI .

Proof
Straightforward. 2

Notice that a proof-database DI for an itemset I in a system of frequent
sets {freq(I) ≥ pI | I ⊆ I} is also a proof-database for I in the system of rare
sets {rare(I) ≤ 1− pI | I ⊆ I}.

In the following subsection we prove an axiomatization for complete sys-
tems of rare sets. From this axiomatization, we can easily derive an axiom-
atization for frequent sets, using Proposition 1.

3.1. LOWER BOUNDS 41

3.1.3 Axioms for Complete Systems of Rare Sets

We first define bags.

Definition 8 Let S be a finite set, and s, s1, . . . , sk ∈ S.

(a) A bag over S is a total function from S into N. Intuitively, a bag is a
set in which elements can appear more then once.

(b) M = 〈s1, . . . , sk〉 denotes the bag over S where for all s ∈ S, M(s) is
the number of occurrences of s in the list 〈s1, . . . , sk〉. As a shorthand,
we denote c occurrences of s by c · s.

Let M,N be bags over S.

(c) |M| =def

∑
s∈SM(s) is the cardinality of M.

(d) It is said that s appears n times in M if M(s) = n. The notation
s ∈M stands for M(s) ≥ 1.

(e) The bag-union M
⋃
N is defined as follows: for all t ∈ S,

(M
⋃
N)(t) =def M(t) +N (t) .

(f) Associate with each element s ∈ S a real number ns.
∑

s∈M ns is
shorthand for

∑
s∈SM(s)ns .

(g) Let φ(m) be a condition on m. 〈m ∈ M | φ(m)〉 denotes the bag K
with for each s ∈ S, K(s) =M(s) if φ(s) holds; else K(s) = 0.

Let K be a bag over the subsets of S; that is, the elements of K are subsets
of S.

(h)
⋃
K is the following bag over S: ∀s ∈ S, (

⋃
K)(s) is the number of

occurrences of sets in K that contain s; that is,
(⋃

K
)
(s) =def |〈K ∈ K | s ∈ K〉| .

(i) The degree of s in K, denoted deg(s,K) is (
⋃
K)(s). The minimal

degree of K, denoted mdeg(K), is mins∈K(deg(s,K)).

2

Example 8 K = 〈 {a, b} , 2 · {b, c} , 2 · {b, d} 〉 is a bag over the subsets of
{a, b, c, d}. |K| = 5,

⋃
K = 〈a, 5·b, 2·c, 2·d〉, deg(b,K) = 5, and mdeg(K) = 1.

2

42 CHAPTER 3. LOWER AND UPPER BOUNDS IN ISOLATION

The Axioms for Complete Systems of Rare Sets

R1 pφ = 0

R2 If I2 ⊆ I1, then pI2 ≤ pI1

R3 Let I ⊆ I, M a bag of subsets of I, with deg(i,M) ≥ 1 for all i ∈ I.
Then

pI ≤

∑
M∈M pM

k
,

with k = mdeg(M).

We now show that these axioms are sound and complete for complete
systems of rare sets.

Theorem 7 Axiomatization of Rare Sets Let

S = {rare(I) ≤ pI | I ⊆ I}

be a system of rare sets over I. The following two statements are equivalent:

- S is a complete system.

- S satisfies R1, R2, and R3.

We split the proof into two parts. In the first part, the soundness of
the axioms is proved. In the second part, the completeness of the axioms is
showed. Proposition 2 and Proposition 3 together then proof Theorem 7.

Soundness of the Axioms for Rare Sets

Proposition 2 Soundness Let S = {rare(I) ≤ pI | I ⊆ I} be a system
of rare sets over I. If S is complete, then R1, R2, and R3 are satisfied.

Proof
The soundness of R1 and R2 is straightforward.
For R3, let S = {rare(I) ≤ pI | I ∈ I} be a complete system, and letM be
a bag over the subsets of I ⊆ I, with deg(i,M) ≥ 1, for all i ∈ I. We prove

that
∑

M∈M
pM

k
≥ pI , with k = mdeg(M).

Let D be a database over I such that D |= S. Let for all J ⊆ I, BJ denote
the bag over the itemsets, with

BJ(K) =def

{
|{(tid, I) ∈ D | I = K}| if J −K 6= φ
0 else

3.1. LOWER BOUNDS 43

Notice that with this definition,

rare(J,D) =
|BJ |

|D|
.

Let K be a set in BI . Since K is in BI , there is at least one item i ∈ I that
is not in T . Because the minimal degree of M is k, there are at least k sets
in M in which i is present. Therefore, K must be in at least k of the bags
in 〈BM | M ∈M〉. Thus,

k |BI | ≤
∑

M∈M

|BM | ≤
∑

M∈M

pM |D| .

Hence,

rare(I,D) ≤

∑
M∈M pM

k
.

Since S is complete, we conclude

pI = max
D

(rare(I,D)) ≤

∑
M∈M pM

k
.

2

Completeness of the Axioms for Rare Sets

First we prove a couple of lemmas. In the proof of completeness we will
make the link between completeness of a system of frequent sets and the
satisfiability of a specific set of inequalities, in a similar way as in the proof
of Theorem 2. The next lemmas deal with this representation and with
properties of systems of inequalities.

Lemma 4 Let S = {rare(I) ≤ pI | I ⊆ I} be a system satisfying R1 and
R2. If for all I ⊆ I, the system

{
pI − pJ ≤

∑

i∈I

Xi −
∑

j∈J

Xj ≤ pI , ∀J ⊆ I (3.1)

has a rational solution, then S is complete.

Proof
Let I ⊆ I. We show that there exists a proof-database D for I. Let
(∀i ∈ I)Xi = βi be a solution of (3.1). We have (∀i ∈ I)0 ≤ βi ≤ 1,

44 CHAPTER 3. LOWER AND UPPER BOUNDS IN ISOLATION

and
∑

i∈I βi = pI ≤ 1 (from the case J = {}) Let D be a database satisfying:
(a) a fraction βi of the transactions has as items I − i, for all i ∈ I; (b) a
fraction 1 −

∑
i∈I βi of transactions that contain all items of I. Because all

βi’s are rational, there exists such a database with as number of transactions
the least general multiplier of the denominators. D is a proof-database for
rare(I) ≤ pI . 2

Lemma 5 Let I ⊆ I an itemset. Let for every nonempty itemset J ⊆ I,
lI , uI be two rational numbers. Consider the following system of inequalities:

lJ ≤
∑

j∈J

Xj ≤ uJ , ∀J ⊆ I

This system has a solution (x1, . . . , x|I|), with xi rational, if and only if for
all K and L, bags of subsets of I with

⋃
K =

⋃
L it is true that

∑
K∈K lK ≤∑

L∈L uL.

Proof
We will use induction on |I|.

|I| = 0 Trivially fulfilled.

General case Suppose the lemma holds for 1, 2, . . . , |I|−1. Let i1 ∈ I, and

UB =
{
(
∑

L∈L uL −
∑

K∈K lK)/α |
⋃
K ∪ 〈α · i1〉 =

⋃
L
}

LB =
{
(
∑

L∈L lL −
∑

K∈K uK)/α |
⋃
K ∪ 〈α · i1〉 =

⋃
L
} (3.2)

We show that max(LB) ≤ min(UB). Let K,L, α,K′,L′, α′ be such
that

⋃
K ∪ {α · i1} =

⋃
L, and

⋃
K′ ∪ {(α′) · i1} =

⋃
L′.

Then
⋃
(α′L ∪ αK′) =

⋃
(αL′ ∪ α′K) is true. Therefore

α′
∑

L∈L

lL + α
∑

K∈K′

lK ≤ α
∑

L∈L′

uL + α′
∑

K∈K

uK ,

and thus
(∑

L∈L

lL −
∑

K∈K

uK

)/
α ≤

(∑

L∈L′

uL −
∑

K∈K′

lK

)/
α′.

Choose now β1 rational such that max(LB) ≤ β1 ≤ min(UB).

3.1. LOWER BOUNDS 45

Consider the following system (3.3) (X1 has been replaced by β1), l
′
K =

max(lK , l(K∪{i1}) − β1), and u′K = min(uK , u(K∪{i1}) − β1), for all K ⊆
I − {i1}. {

l′K ≤
∑

k∈K

Xk ≤ u′K , ∀K ⊆ I − {i1} (3.3)

We use induction to show this system has a solution. Therefore, we
need to show that whenever

⋃
K =

⋃
L,

∑

K∈K

max(lK , lK∪{i1} − β1) ≤
∑

L∈L

min(uL, uL∪{i1} − β1) (3.4)

holds. Let K = K′
⋃
K′′, L = L′

⋃
L′′, where

K′ = 〈K ∈ K | lK < lK∪{i1} − β1〉,
L′ = 〈L ∈ L | lL < lL∪{i1} − β1〉.

.

Suppose |L′| > |K′|. Then we have

N︷ ︸︸ ︷⋃

L∈L′

(L ∪ {i1}) ∪
⋃
L′′ =

M︷ ︸︸ ︷⋃

K∈K′

(K ∪ {i1}) ∪
⋃
K′′ ∪(|L′| − |K′| {i1}).

Since β1 ≥ max(LB),

β1 ≥

∑
M∈M lM −

∑
N∈N uN

|L′| − |K′|

holds. In case |L′| < |K′|, a similar argument can be used, but with UB
instead of LB (3.2). Therefore, (3.4) holds, and by induction the second
system has a solution β2, . . . , β|I|. It is easy to see that β1, . . . , β|I| is a
solution for the original system.

2

Lemma 6 Let S = {rare(I) ≤ pI | I ⊆ I} be a system of rare sets, and I
be an itemset over I. If S satisfies R1, R2, and R3, then the system

{
pI − pJ ≤

∑

i∈I

Xi −
∑

j∈J

Xj ≤ pI , ∀J ⊆ I (3.5)

has a rational solution.

46 CHAPTER 3. LOWER AND UPPER BOUNDS IN ISOLATION

Proof
According to Lemma 5, (3.5) has a solution if and only if for all bagsM and
N over the subsets of I, such that

⋃
M =

⋃
N ,

∑

M∈M

pI − pI−M ≤
∑

N∈N

pN

holds. Let L = N
⋃
〈I −M | M ∈M〉.

Then, by R3 we have that
∑

L∈L pL ≥ kpI , with

k = mini∈I

∣∣∣〈N | i ∈ N ∧N ∈ N〉
⋃
〈M | M ∈M∧ i 6∈M〉

∣∣∣ .

Because |〈M | M ∈M∧ i ∈M〉| = |〈N | N ∈ N ∧ i ∈ N〉|, it follows that
k = |M|.
Therefore,

∑
L∈L pL ≥ |M| pK holds.

Since
∑

L∈L

pL =
∑

N∈N

pN +
∑

M∈M

pK−M ,

and |M| pK =
∑

M∈M pI ,∑
M∈M pI − pI−M ≤

∑
N∈N pN holds. 2

Proposition 3 Let S = {rare(I) ≤ pI | I ⊆ I} be a system of rare sets
over I. If S satisfies R1, R2, and R3, then S is complete.

Proof
If S satisfies R1, R2, and R3, then

{
pI − pJ ≤

∑

i∈I

Xi −
∑

j∈J

Xj ≤ pI , ∀J ⊆ I

has a rational solution (Lemma 6.) Therefore, S is complete (Lemma 4.) 2

3.1. LOWER BOUNDS 47

Example 9 Consider the following systems:

S1 =

rare(φ) ≤ 0.2, rare(a) ≤ 0.8, rare(b) ≤ 0.4,
rare(c) ≤ 0.4, rare(ab) ≤ 0.4, rare(ac) ≤ 0.4,
rare(bc) ≤ 0.8, rare(abc) ≤ 1

S2 =

rare(φ) ≤ 0, rare(a) ≤ 0.8, rare(b) ≤ 0.4,
rare(c) ≤ 0.4, rare(ab) ≤ 0.4, rare(ac) ≤ 0.4,
rare(bc) ≤ 0.8, rare(abc) ≤ 1

S3 =

rare(φ) ≤ 0, rare(a) ≤ 0.4, rare(b) ≤ 0.4,
rare(c) ≤ 0.4, rare(ab) ≤ 0.4, rare(ac) ≤ 0.4,
rare(bc) ≤ 0.8, rare(abc) ≤ 1

S4 =

rare(φ) ≤ 0, rare(a) ≤ 0.4, rare(b) ≤ 0.4,
rare(c) ≤ 0.4, rare(ab) ≤ 0.4, rare(ac) ≤ 0.4,
rare(bc) ≤ 0.8, rare(abc) ≤ 0.8

S1 is not complete, since rare(φ) ≤ 0.2 violates R1. S2 is not complete,
since rare(ab) ≤ 0.4 and rare(a) ≤ 0.8 violate R2. The system S3 is not
complete, since rare(ab) ≤ 0.4, rare(ac) ≤ 0.4, and rare(abc) ≤ 1 violate
R3. The system S4 is complete, since it satisfies R1, R2, and R3. S4 is
the unique completion of S1, S2, and S3. 2

Why Bags are Necessary in R3

In the previous section we proved that R1, R2, and R3 are sound and
complete for complete systems of rare set expressions. In rule R3, we state
a condition that has to be tested for all bags over the subsets of all itemsets
I. Later on we will show that it is not necessary to test all bags. We will
describe a finite class of bags that is sufficient to test. Here we prove that in
rule R3, we cannot change the condition “M is a bag of subsets of I” into
“M is a set of subsets of I”. Therefore we will prove that R1, R2, and

R3 = Let I ⊆ I, M a subset of 2I , with deg(i,M) ≥ 1, for all
i ∈ I. Then

pI ≤

∑
M∈M pM

k
,

with k = mdeg(M)

are not complete.

48 CHAPTER 3. LOWER AND UPPER BOUNDS IN ISOLATION

Consider the following system of rare sets:

S =

rare(φ) ≤ 0, rare(a) ≤ 0.4, rare(b) ≤ 0.4,
rare(c) ≤ 0.4, rare(d) ≤ 0.4, rare(ab) ≤ 0.4,
rare(ac) ≤ 0.4, rare(ad) ≤ 0.4, rare(bc) ≤ 0.8,
rare(bd) ≤ 0.8, rare(cd) ≤ 0.8, rare(abc) ≤ 0.8,
rare(abd) ≤ 0.8, rare(acd) ≤ 0.8, rare(bcd) ≤ 0.8,
rare(abcd) ≤ 1

(3.6)

This system is not complete as can be seen by R3 with I = abcd and

M = 〈ab, ac, ad, 2 · bcd〉.

Application of R3 gives:

pabcd ≤
pab + pac + pad + 2pbcd

3
=

14

15
.

However, we show next that S satisfies R3.

Lemma 7 Let for each I ⊆ I, pI be a rational number in [0, 1]. Let
S1, S2 ⊆ 2I , and S1∩S2 = φ. If mdeg(S1)+mdeg(S2) = mdeg(S1∪S2), then
it holds that ∑

M∈(S1∪S2) pM

mdeg(S1 ∪ S2)
≥ min

(∑
M∈S1

pM

mdeg(S1)
,

∑
M∈S2

pM

mdeg(S2)

)
.

Proof
Let md1 = mdeg(S1), md2 = mdeg(S2), md∪ = mdeg(S1 ∪ S2). Without loss
of generality, we can assume that

∑
M∈S1

pM

md1

≤

∑
M∈S2

pM

md2

.

∑
M∈(S1∪S2) pM

md∪
=

∑
M∈S1

pM

md∪
+

∑
M∈S2

pM

md∪

=

∑
M∈S1

pM

md1

md1

md∪
+

∑
M∈S2

pM

md2

md2

md∪

≥

∑
M∈S1

pM

md1

md1

md∪
+

∑
M∈S1

pM

md1

md2

md∪

=

∑
M∈S1

pM

md1

.

2

3.1. LOWER BOUNDS 49

Proposition 4 The system of rare sets S given in (3.6) satisfies R3.

Proof
Consider the following three proof databases.

D1

TID Items

1 a, b, c, d
2 a, b, d
3 a, c, d
4 a, c
5 a, b

D2

TID Items

1 a, b, c, d
2 a, b, c, d
3 a, b, c, d
4 b, c, d
5 b, c, d

D3

TID Items

1 a, b, c, d
2 a, d
3 a, d
4 a, b, c
5 a, b, c

S
rare(φ) ≤ 0 rare(bc) ≤ 0.8
rare(a) ≤ 0.4 rare(bd) ≤ 0.8
rare(b) ≤ 0.4 rare(cd) ≤ 0.8
rare(c) ≤ 0.4 rare(abc) ≤ 0.8
rare(d) ≤ 0.4 rare(abd) ≤ 0.8
rare(ab) ≤ 0.4 rare(acd) ≤ 0.8
rare(ac) ≤ 0.4 rare(bcd) ≤ 0.8
rare(ad) ≤ 0.4 rare(abcd) ≤ 1

D1 is a proof-database for b, c, d, ab, ac, ad, bc, abc, and bcd in S, D2 is a
proof-database for a in S, and D3 is a proof-database for abd, acd, bd, and cd
is S.

These proof-matrices show for all rare set expressions except for the
expression rare(abcd) ≤ 1 that the system S cannot be improved. Since
R1,R2,R3 are sound, the only way in which S can violate R1,R2,R3 is
in abcd with rule R3. Therefore, to prove the proposition, we need to show

that for every set S of subsets of {a, b, c, d}, the sum
∑

K∈S pK

mdeg(S)
is at least 1,

and thus pABCD cannot be improved with rule R3.

Consider the system S ′ that we get by replacing rare(ab) ≤ 0.4 by
rare(ab) ≤ 0.8 in S. S ′ is complete. D1 is a proof-database for b, c, d,
ac, ad, bc, abc, and bcd in S ′, D2 is a proof-matrix for a in S ′, and D3 is a
proof-matrix for abd, acd, bd, and cd in S ′. Two proof-databases D4, and D5

for respectively ab and abcd in S ′ are given next.

50 CHAPTER 3. LOWER AND UPPER BOUNDS IN ISOLATION

D4

TID Items

1 a, c, d
2 a, c, d
3 a, b, c, d
4 b, c, d
5 b, c, d

D5

TID Items

1 a, c, d
2 a, c, d
3 a, b, d
4 b, c
5 b, c, d

S ′

rare(φ) ≤ 0 rare(bc) ≤ 0.8
rare(a) ≤ 0.4 rare(bd) ≤ 0.8
rare(b) ≤ 0.4 rare(cd) ≤ 0.8
rare(c) ≤ 0.4 rare(abc) ≤ 0.8
rare(d) ≤ 0.4 rare(abd) ≤ 0.8
rare(ab) ≤ 0.8 rare(acd) ≤ 0.8
rare(ac) ≤ 0.4 rare(bcd) ≤ 0.8
rare(ad) ≤ 0.4 rare(abcd) ≤ 1

This completeness of system S ′ shows that for every set S over the subsets

of abcd that does not contain ab, the sum
∑

K∈S pK

mdeg(S)
will be bigger than or equal

to 1, because R3 is sound, and S ′ agrees with S on the frequency of every
itemset except for ab, and thus, every expression rare(abcd) ≤ pabcd, derived
from S without using ab, is also implied by S ′.

Since every permutation of b, c, d leaves S unchanged, the same result can
be proven for ac and ad.

Consider also the system S ′′ that we get by replacing rare(bcd) ≤ 0.8 by
rare(bcd) ≤ 1 in the system S. Again we can show that the resulting system
S ′′ is complete, with the following proof-database D6 for bcd and abcd in S ′′.

D6

TID Items

1 a, c, d
2 a, c, d
3 a, b, d
4 a, b, d
5 a, b, c

S ′′

rare(φ) ≤ 0 rare(bc) ≤ 0.8
rare(a) ≤ 0.4 rare(bd) ≤ 0.8
rare(b) ≤ 0.4 rare(cd) ≤ 0.8
rare(c) ≤ 0.4 rare(abc) ≤ 0.8
rare(d) ≤ 0.4 rare(abd) ≤ 0.8
rare(ab) ≤ 0.4 rare(acd) ≤ 0.8
rare(ac) ≤ 0.4 rare(bcd) ≤ 1
rare(ad) ≤ 0.4 rare(abcd) ≤ 1

Therefore, for every set S of subsets of {a, b, c, d} that is not a superset

of {ab, ac, ad, bcd}, the sum
∑

K∈S pK

mdeg(S)
is at least 1. We will now use Lemma 7

to argue that every superset S of {ab, ac, ad, bcd} will also give a sum of at
least 1. For every possible superset S of {ab, ac, ad, bcd} we will identify a
subset S ′ such that S ′ has the same degree in a, b, c, and d. Then we can
split S into S ′ and S ′′ = S − S ′ such that mdeg(S) = mdeg(S ′) +mdeg(S ′′).
According to Lemma 7, the sum over S will be bigger than the minimum of
the sum over S ′ and the sum over S ′′. Since in all cases neither S ′ nor S ′′

3.1. LOWER BOUNDS 51

will be supersets of {ab, ac, ad, bcd}, both sums will be at least 1. The next
tabular considers all cases systematically.

S = {ab, ac, ad, bcd}
pab + pac + pad + pbcd

2
= 1

a ∈ S S ′ = {a, bcd}
b ∈ S S ′ = {b, ac, ad, bcd}
c ∈ S S ′ = {c, ab, ad, bcd}
d ∈ S S ′ = {d, ab, ac, bcd}
bc ∈ S S ′ = {ab, ac, ad, bc}
abc ∈ S S ′ = {ad, abc, bcd}
abd ∈ S S ′ = {ac, abd, bcd}
acd ∈ S S ′ = {ab, acd, bcd}
abcd ∈ S S ′ = {abcd}

2

Axiomatization of Frequent Sets

From Theorem 7, we can now easily derive the following axiomatization for
frequent sets, using Proposition 1.

Theorem 8 Axiomatization of Frequent Sets Let

S = {freq(I) ≥ lI | I ⊆ I}

be a system of frequent sets over I. S is a complete system if and only if S
satisfies

F1 lφ = 1,

F2 If I2 ⊆ I1, then lI2 ≥ lI1, and

F3 Let I ⊆ I, M a bag of subsets of I, with deg(i,M) ≥ 1, for all i ∈ I.
Then

lK ≥ 1−
|M| −

∑
M∈M lM

k
,

with k = mdeg(M) .

52 CHAPTER 3. LOWER AND UPPER BOUNDS IN ISOLATION

3.1.4 Computing Completions of Systems

In the rest of the section we continue working with rare sets. The results
obtained for rare sets can, just like the axiomatization, easily be carried over
to frequent sets.

In the previous section we introduced and proved an axiomatization for
complete systems of rare and frequent sets. There is however still one problem
with this axiomatization. R3 states a property that has to be checked for all
bags over the subsets of I. This number of bags is infinite. In this section
we show that it suffices to check only a finite number of bags: the minimal
multi-covers. We show that the number of minimal multi-covers over a set
is finite, and that they can be computed.

We also look at the following problem: when an incomplete system is
given, can we compute its completion using the axioms? We show that this
computation is indeed possible. We use R1, R2, and R3 as inference rules
to adjust rareness values in the system; whenever we detect an inconsistency
with one of the rules, we improve the system. When the rules are applied
in a systematic way, this method leads to a complete system within a finite
number of steps.

Actually, the completion of a system of frequent sets can be computed
in an obvious way by using linear programming [40]. For all itemsets I, we
can minimize pI with respect to a system of inequalities expressing that the
frequencies obey the system of rare sets. Since the system of inequalities has
polynomial size in the number of frequent itemsets, this algorithm is polyno-
mial in the size of the system. However, as argued in [30], an axiomatization
has as advantage that it provides human-readable proofs, and that, when
the inference is stopped before termination, still a partial inference of the
frequencies is provided.

Minimal Multi-covers

In the axiomatization for complete systems of rare sets, R3 expresses a con-
dition that has to be checked for every bag over the subsets of every itemset.
Since the number of bags is infinite, rule R3 cannot be used in a practical
implementation. Therefore, we will show that it is not necessary to check
every bag , but it suffices to check all minimal multi-covers , which are finite
in number.

3.1. LOWER BOUNDS 53

Definition 9

- A k-cover of a set S is a bag K over the subsets of S such that for all
s ∈ S, deg(s,K) = k.

- A bag K over the subsets of a set S is a multi-cover of S if there exists
an integer k such that K is a k-cover of S.

- A k-cover K of S is minimal if it cannot be decomposed as K = K1

⋃
K2,

with K1 and K2 respectively k1- and k2-covers of S, k1, k2 > 0.

2

Example 10 Let I = {a, b, c, d}. 〈ab, bc, cd, ad, abcd〉 is a 3-cover of I. It
is not minimal, because it can be decomposed into the following two minimal
multi-covers of I: 〈ab, bc, cd, ad〉 (a 2-cover) and 〈abcd〉 (a 1-cover). 2

The Rule R3

′

The new rule that replaces R3 states that it is not necessary to check all
bags; we only need to check the minimal multi-covers. This adaptation gives
the following R3

′:

R3

′ Let I ⊆ I, M a minimal k-cover of I. Then

pI ≤

∑
M∈M pM

k
.

We show that the rulesR1, R2, andR3

′ are equivalent to the rulesR1,
R2, and R3. First we have to proof some lemmas.

Lemma 8 Let a1, . . . an, b1, . . . , bn be strict positive reals. Then, for at least
one i,

a1 + . . .+ an
b1 + . . .+ bn

≥
ai
bi

holds.

Proof
Suppose, for the sake of contradiction, that for all i,

a1 + . . .+ an
b1 + . . .+ bn

<
ai
bi

.

54 CHAPTER 3. LOWER AND UPPER BOUNDS IN ISOLATION

These inequalities imply that for each i,

a1bi + . . . anbi < aib1 + . . .+ aibn .

If we sum all these inequalities, we get:
∑

1≤i,j≤n

aibj <
∑

1≤i,j≤n

aibj .

This inequality is clearly a contradiction. 2

Lemma 9 Every k-coverM has a decomposition into minimal multi-covers
M1, . . . ,Mn, such that

⋃
i=1...nMi =M.

Proof
The proof is an easy induction on the cardinality of the k-coverM. The base
case |M| = 1 is trivially fulfilled. In general, either M is already minimal,
and in that case the lemma holds, orM is not minimal, in which case we can,
by definition, split M into two covers M1, M2 such that M = M1

⋃
M2.

We can use the induction hypothesis to splitM1 andM2 into minimal cov-
ers. Those two collections of minimal covers together forms a decomposition
as required. 2

Notice incidentally that this decomposition is not necessarily unique;
the bag 〈ab, ac, bc, a, b, c〉 can be split either as 〈ab, ac, bc〉

⋃
〈a, b, c〉 or as

〈a, bc〉
⋃
〈b, ac〉

⋃
〈c, ab〉. For the proof this non-uniqueness is however not

an issue.

Theorem 9 Let S be a system of rare sets over I. The following statements
are equivalent:

1. S satisfies R1,R2, and R3.

2. S satisfies R1,R2, and R3

′.

Proof
1⇒ 2 is trivial, since R3

′ is less restrictive than R3.
2⇒ 1 Suppose that the system S = {rare(I) ≤ pI | I ⊆ I} satisfies R1 and
R2, but does not satisfy R3. We will show that it is impossible that it
satisfies R3’.

There must be a set I ⊆ I, and a bag M over the subsets of I, such

that pI >
∑

M∈M
pM

k
with k = mini∈I(deg(i,M)). For each i ∈ I such that

3.1. LOWER BOUNDS 55

deg(i,M) > k, we replace deg(i,M) − k of the sets J ∈ M that contain i
by J − {i}. In this way, we construct a k-cover M′ of I.
Because S satisfies R2,

∑

M∈M

pM ≥
∑

M∈M′

pM .

The k-cover M′ can be decomposed into minimal multi-covers M1, . . . ,Mn

of I, with Mi a ki-cover of I (Lemma 9). Because
∑

m∈M′ pM

k
=

∑
M∈M1

pM + . . .+
∑

M∈Mn
pM

k1 + . . .+ kn
,

for at least one i, ∑
M∈Mi

ki
< pI

must hold (Lemma 8.) Therefore, R3

′ is violated. 2

The Number of Minimal Multi-Covers of a Finite Set is Finite

R3

′ is clearly a restriction of rule R3, but we still have to show that this
rule is finite. Before we give the proof, we give a very technical lemma we
will need.

Lemma 10 Let C be a positive integer, and let N be a bag over {−C,−C+
1, . . . ,−1, 0, 1, . . . , C − 1, C} with

∑
n∈N n = 0. If |N | ≥ 2C3, then there

exists a bag M⊂ N (φ 6=M 6= N), with
∑

m∈Mm = 0.

Proof
If 0 ∈ N , the lemma clearly holds. Assume 0 6∈ N . N+ = 〈n ∈ N | n > 0〉,
N− = 〈n ∈ N | n < 0〉. At least one of N− and N+ contains at least C3

elements. Assume that |N+| ≥ C3. Therefore, there is at least one positive
integer p that occurs C times. Because the sum of the elements in N + is at
least C3, the sum of the elements in N− is at most −C3. Therefore, there
are at least C2 elements in N−, and thus there is a negative element n such
that deg(n,N−) ≥ C. (The same result obtains if |N−| ≥ C3) It is also
clear that |n|p = −pn, and thus the bag 〈|n| · p, p · n〉 has sum 0, and is a
non-empty subbag of N . 2

Theorem 10 Let I be a finite set. The minimal multi-covers of I are finite
in number and computable.

56 CHAPTER 3. LOWER AND UPPER BOUNDS IN ISOLATION

Proof
We will prove this theorem by induction on the size of I.
Base case |I| = 1. Trivial, since 〈I〉 is the only non-empty minimal multi-
cover of I.
General case. We assume by induction that the theorem holds for sets J
with size up to |I| − 1. Thus, the degree and the cardinality of a minimal
multi-cover of a set J of cardinality smaller than |I| is bounded, since there
is only a finite number of them. Let d, c be the respective bounds on the
degree and the cardinality of the minimal multi-covers of sets of size at most
|I| − 1.

Let K be a minimal k-cover of I, i ∈ I. It is clear that

L = proj(K, I − {i}) =def 〈K − {i} | K ∈ K〉

is a (not necessarily minimal) multi-cover of I−{i}. According to Lemma 9,
we can split L = L1∪. . .∪Ln with Lj a minimal lj-cover of I−{i}. Therefore,
we can split K = K1 ∪ . . . ∪Kn with Lj = proj(Kj, K − {a}). By induction,
lj ≤ d and |Lj| ≤ c. Consider now the bag

M = 〈l1 − deg(i,K1), . . . , ln − deg(i,Kn)〉 .

The sum of the bag is 0, since

n∑

j=1

lj = k =
n∑

j=1

deg(i,Kj) .

Notice also that
−c ≤ lj − deg(a,Kj) ≤ d ≤ c .

Because K is minimal, for every sub-bag not equal to M, the sum is not 0,
otherwise the union of the Kj’s that correspond to this subbag, would be a
multi-cover of I, and thus K would not be minimal. Therefore, via Lemma
10, the cardinality of M is bounded by 2c3. Thus, |K| ≤ 2c4. Hence, there
are at most 22|I|c4 minimal multi-covers of I and thus the number of minimal
multi-covers is finite. 2

Computing the Completion of a System

We prove that by applying R1, R2, and R3 as rules, we can compute the
completion of any given system.

3.1. LOWER BOUNDS 57

Applying for example rule R2 means that whenever we see a situation
I1 ⊆ I2, and the system states rare(I1) ≤ pI1 and rare(I2) ≤ pI2 , and pI2 <
pI1 , we improve the system by replacing rare(I1) ≤ pI1 by rare(I1) ≤ pI2 .
R1 can only be applied once; R2 and R3 never create situations in which
R1 can be applied again.

R2 is a top-down operation, in the sense that the rareness values of smaller
sets is adjusted using values of larger sets. So, for a given system S we can
easily reach a fixpoint for ruleR2, by going top-down; we first try to improve
the frequencies of the largest itemsets, before continuing with the smaller
ones.

R3 is a bottom-up operation; values of smaller sets are used to adjust the
values of larger sets. So, again, for a given system S, we can reach a fixpoint
for rule R3, by applying it bottom-up.

A trivial algorithm to compute the completion of a system is the following:
apply R1, and then keep applying R2 and R3 randomly until a fixpoint is
reached. The limit of this approach yields a complete system, but it is not
true that always a fixpoint will be reached within a finite number of steps.
In Fig. 3.3 an infinite run is illustrated. The completion of the system is all
rareness values equal to 0, because for every database satisfying the system,
every transaction contains ab, and every transaction contains bc, so there are
no items missing in any transaction at all. When we keep applying the rules
as in Fig. 3.3, we never reach this fixpoint, since in step 2n, the value for abc
is
(

1
2

)n
. We will now show that when we apply the rules R2 and R3 in a

systematic way, we always reach a fixpoint within a finite number of steps.
This systematic approach is illustrated in Fig. 3.4. First, we apply R2 top-
down until we reach a fixpoint for R2, and next, we apply R3 bottom-up
until we reach a fixpoint forR3. The systematic approach is written down in
Fig. 3.5. These two meta steps are all there is needed to reach the completion.

Definition 10 Let J ⊆ I be an itemset, and S = {rare(I) ≤ pI | I ⊆ I}
be a system of rare sets over I. Let J ⊆ I be an itemset. The projection of
S on J , denoted Proj(S, J), is the system S ′ = {rare(I) ≤ pI | I ⊆ J}. 2

Lemma 11 Let J ⊆ I be an itemset, and let S = {rare(I) ≤ pI | I ⊆ I}
be a system of rare sets over I.

(1) If S is complete, then Proj(S, J) is complete as well.

(2) if S satisfies R2, then Proj(C(S), J) = C(Proj(S, J)) .

58 CHAPTER 3. LOWER AND UPPER BOUNDS IN ISOLATION

abc≤1

ab≤0 ac≤1 bc≤0

a≤ 1

2
b≤ 1

4

c≤ 1

2

φ≤0

"
""

b
bb

b
bb

"
""

"
""

b
bb
"

""
b

bb

abc
≤

1

2

ab≤0 ac≤1 bc≤0

a≤ 1

2
b≤ 1

4

c≤ 1

2

φ≤0

"
""

b
bb

b
bb

"
""

"
""

b
bb
"

""
b

bb

abc≤ 1

2

ab≤0
ac

≤
1

2
bc≤0

a≤ 1

2
b≤ 1

4

c≤ 1

2

φ≤0

"
""

b
bb

b
bb

"
""

"
""

b
bb
"

""
b

bb

abc
≤

1

4

ab≤0
ac≤ 1

2
bc≤0

a≤ 1

2
b≤ 1

4

c≤ 1

2

φ≤0

"
""

b
bb

b
bb

"
""

"
""

b
bb
"

""
b

bb

abc≤ 1

4

ab≤0
ac≤1

4
bc≤0

a≤ 1

2
b≤ 1

4

c≤ 1

2

φ≤0

"
""

b
bb

b
bb

"
""

"
""

b
bb
"

""
b

bb

abc≤1

8

ab≤0
ac≤ 1

4
bc≤0

a≤ 1

2
b≤ 1

4

c≤ 1

2

φ≤0

"
""

b
bb

b
bb

"
""

"
""

b
bb
"

""
b

bb

-R3 -R2 -R3

-R2 -R3 -...

Figure 3.3: “Random” application of the rules can lead to infinite loops

abc≤1

ab≤0 ac≤1 bc≤0

a≤ 1

2
b≤ 1

4

c≤ 1

2

φ≤0

"
""

b
bb

b
bb

"
""

"
""

b
bb
"

""
b

bb

abc≤1

ab≤0 ac≤1 bc≤0

a≤0 b≤ 1

4

c≤ 1

2

φ≤0

"
""

b
bb

b
bb

"
""

"
""

b
bb
"

""
b

bb

abc≤1

ab≤0
ac≤ 1

2
bc≤0

a≤0 b≤0
c≤ 1

2

φ≤0

"
""

b
bb

b
bb

"
""

"
""

b
bb
"

""
b

bb

abc≤1

ab≤0
ac≤ 1

2
bc≤0

a≤0 b≤0 c≤0

φ≤0

"
""

b
bb

b
bb

"
""

"
""

b
bb
"

""
b

bb

abc≤1

ab≤0 ac≤0 bc≤0

a≤0 b≤0 c≤0

φ≤0

"
""

b
bb

b
bb

"
""

"
""

b
bb
"

""
b

bb

abc≤0

ab≤0 ac≤0 bc≤0

a≤0 b≤0 c≤0

φ≤0

"
""

b
bb

b
bb

"
""

"
""

b
bb
"

""
b

bb

-R2 -R2 -R2

-R3 -R3

Figure 3.4: Systematic application of the rules avoids infinite computations

3.1. LOWER BOUNDS 59

Input: System of rare sets S = {rare(I) ≤ pI | I ⊆ I} over I.
Output: Completion of S.

Complete(S) TopDwn(S)
pφ = 0 for i = n downto 1 do
TopDwn(S) for all itemsets I of cardinality i do
BotUp(S) make pI = minI⊆J(pJ)

BotUp(S)
for i = 1 to n do

for all itemsets I of cardinality i do

make pI = min
K, minimal k-cover of I

(∑
K∈K pK

k

)

Figure 3.5: Algorithm Complete for finding the completion of the system
S = {rare(I) ≤ pI | I ⊆ I} over I

Proof
(1) is straightforward.
(2) Let

C(Proj(S, J)) = {rare(I) ≤ pI | I ⊆ J} .

Then, for every I ⊆ J , we can construct a proof-database DI , such that
rare(I,DI) = pI , and for all I ′ ⊆ J , rare(I ′,DI) ≤ pI′ .

2 We will now extend

this proof-database DI over J to a proof-database D̂I of I over I. D̂I contains
the same number of transactions as DI , and is formed by adding all items in
I − J to every transaction in DI . D̂I satisfies S, since it is constructed in
such a way that for all I ′ ⊆ I holds that

rare(I ′, D̂I) = rare(I ′ ∩ I,DI) ≤ pI′∩I ≤
(R2) pI′ .

Therefore, C(S) must contain rare(I) ≤ pI , since D̂I is a proof-database for
rare(I) ≤ pI . 2

Theorem 11 The algorithm Complete in Fig. 3.5 computes the completion
of the system of rare sets S.

2The existence of this proof-database can easily be established from the proof of the
completeness of R1, R2 and R3.

60 CHAPTER 3. LOWER AND UPPER BOUNDS IN ISOLATION

Proof
We will prove this theorem by induction on |I|. In the base case |I| = 0 the
theorem is trivially true. Suppose the theorem holds for 1, . . . , |I| − 1.

BotUp(Proj(TopDwn(S), J)) = Proj(BotUp(TopDwn(S)), J) , and
TopDwn(Proj(TopDwn(S), J)) = Proj(TopDwn(S), J)
with J ⊆ I .

Therefore, for all J ⊂ I it holds that:
Proj(C(S), J) = Proj(C(TopDwn(S)), J) (S |= TopDwn(S))

= C(Proj(TopDwn(S), J)) (Lemma 11)
= BotUp(Proj(TopDwn(S), J)) (Induction hypothesis)
= Proj(BotUp(TopDwn(S)), J) (R3 only uses subsets)

We now show that the rareness value for I in BotUp(TopDwn(S)) equals
the rareness value in C(S). This equality is straightforward, since all other
rareness values between these two systems are equal, and I can only be ad-
justed by the bottom-up rule R3, and this bottom-up rule is applied in the
last step of BotUp(.). 2

3.1.5 Extending the Axiomatization to Sparse Systems

Until now we required that in a system of frequent sets for every itemset a
frequent set expression was present. Now we drop this requirement. This
has however repercussions for the axiomatization.

Definition 11

- A sparse system of rare sets is a collection

{rare(I) ≤ pI | I ∈ P}

of rare set expressions, with P ⊆ 2I. Hence, not every subset of I has
to be present in the system.

- A database D over I satisfies a sparse system S if D satisfies rare(I) ≤
pI for all I in P.

- A sparse system S implies a rare set expression rare(I) ≤ p, if every
database that satisfies S, also satisfies rare(I) ≤ p.

- A sparse system {rare(I) ≤ pI | I ∈ P} is complete if for all rare(I) ≤
p with I ∈ P, that are implied by the system, pI ≤ p holds. 2

3.1. LOWER BOUNDS 61

The following proposition states that every complete sparse system can
be extended to a complete full system.

Proposition 5 Let S = {rare(I) ≤ pI | I ∈ P} be a sparse system. The
following two statements are equivalent:

- S is complete.

- There exists a complete full system S = {rare(I) ≤ p̂I | I ⊆ I}, such
that for all I ∈ P, pI = p̂I holds.

Proof
(⇒) Let D be an arbitrary database satisfying S. Then D satisfies the system

Ŝ = {rare(I) ≤ qI | I ⊆ I} ,

with qI = pI if I ∈ P , and qI = 1 else. Hence, D satisfies the complete
system

S = C(Ŝ) = {rare(I) ≤ cI | I ⊆ I} .

Therefore, D satisfies the sparse system

{rare(I) ≤ cI | I ∈ P} .

This system has to be equal to S, because S is complete, and cI ≤ pI for all
I ⊆ I.
(⇐) S is complete. Therefore, for every I ∈ P , there exists a proof-database
DI such that DI satisfies S, and rare(I,DI) = p̂I . Since DI also satisfies S,
S must be complete. 2

The proposition leads to the following algorithm for computing the com-
pletion C(S) of the sparse system S = {rare(I) ≤ pI | I ∈ P}.

1. Let S = {rare(I) ≤ qI | I ⊆ I}, with qI = pI if I ∈ P , else qI = 1.

2. Compute the completion C(S) = {rare(I) ≤ cI | I ⊆ I} of S with the
methods in Section 3.1.4.

3. Let C(S) = {rare(I) ≤ cI | I ∈ P}.

However, it is clear that when the number of sets in P is small, this approach
is not very efficient. Suppose that we are given a sparse system with |P| =
m rare set expressions over a set with |I| = n items. To compute the
completion, we calculate the completion of a system with 2n expressions,
where the input contained m expressions. The following proposition shows
that there are more efficient ways to calculate the completion of a sparse
system. It shows that we do not need all subsets of I.

62 CHAPTER 3. LOWER AND UPPER BOUNDS IN ISOLATION

Theorem 12 The following are equivalent:

1. The sparse system S = {rare(I1) ≤ p1, . . . , rare(In) ≤ pn} is complete

2. S satisfies

S1 pφ = 0

S2 If I2 ⊆ I1, then pI2 ≤ pI1

S3 Let M be a minimal k-cover of Ii. Then

pIi ≤

∑
M∈MminM⊆Ij(pIj)

k
.

3. S satisfies

S1 pφ = 0

S2 If I2 ⊆ I1, then pI2 ≤ pI1

X Let M be a bag over {Ij ∩ I | 0 ≤ j ≤ n} with minimal degree k.
Then

pI ≤

∑
M∈MminM⊆Ij(pIj)

k
.

Proof
1⇔ 2 Soundness of S1, S2, and S3 is straightforward.
Completeness. Suppose the sparse system

S = {rare(I) ≤ pI | I ∈ P}

satisfies S1, S2, and S3. Let

S ′ = {rare(I) ≤ p′I | I ⊆ I} ,

with p′I = pI if I ∈ P , and p′I = 1 else. Suppose

C(S ′) = {rare(I) ≤ qI | I ⊆ I} .

We show by contradiction that for all I ∈ P , pI = qI holds. Suppose there
is a I ∈ P such that pI 6= qI .

C(S ′) = BotUp(TopDwn(S ′)) ,

by Theorem 11. Since S satisfies S1 and S2, the rareness of I in C(S ′) comes
from the bottom-up step, and thus there exists a minimal k-cover K over

the subsets of I, such that
∑

K∈K
qK

k
< pI . The qK ’s in this step can on their

3.1. LOWER BOUNDS 63

turn be obtained in the top-down step, or in the bottom-up step. If qK was
obtained in the top-down step, then it is easy to see that qK = minK⊆Ii pIi ;
that is, the minimum rareness of all supersets of K that were given as input.
In the other case, qK was obtained by a bottom-up step. In that case, there
exists a minimal l-cover L over the subsets of L, such that qL =

∑
L′∈L qL′ .

We now construct a kl-cover K′ of K as follows:

K′ = (K − 〈L〉)
⋃
L .

K′ is a kl-cover. In this way we can get rid of all qL’s that were obtained by
application of a bottom-up step, because we can iteratively replace each qL
that was obtained by application of R3, by a sum of qL′ ’s, where all L′ ⊂ L.
When these L′ are obtained by R3, we can replace them by qL′′ of even
smaller sets L′′. Since the singleton sets can only be obtained by R2, this
recursion must stop, and thus there exists an m-cover M such that

∑
M∈M qM

m
< pI ,

and all qM ’s are obtained by R2. As such, for all M ,

qM = min
M⊆Ii

pKi
,

and thus ∑
M∈MminM⊆Ii pIi

m
< pI .

There is still one problem: M is not necessarily minimal. We can cope with
this problem in exactly the same way as at the end of the proof of Theorem
9.

2⇔ 3 Suppose system

S = {rare(I1) ≤ p1, . . . , rare(In) ≤ pn}

satisfies S1, S2, but does not satisfy S3. We will show that it also does not
satisfy X . Hence, there exists a bag M with minimal degree k and a set I
such that

pIi >

∑
M∈MminM⊆Ij(pIj)

k
.

For each M ∈ M, fix a IM ∈ {I1, . . . , In}, such that M ⊆ IM , and pIM =
minM⊆Ij(pIj). Let K be the following bag: 〈IM ∩K |M ∈M〉. The minimal
degree of K is at least k (since M ⊆ IM ∩ I for all M ∈M), and hence

pIi >

∑
K∈KminM⊆Ij(pIj)

mdeg(K)
.

64 CHAPTER 3. LOWER AND UPPER BOUNDS IN ISOLATION

This inequality is a violation of X .

The other direction is trivial, since S3 is equivalent to:

Let M be a bag over the subsets of I with minimal degree k.
Then

pI ≤

∑
M∈MminM⊆Ij(pIj)

k
.

Since X is a specialization of this rule, X holds whenever S3 holds. 2

Application of Sparse Systems

Suppose only the frequencies for the single-itemsets are given, and we want
to derive a lower bound on itemset I. Using a sparse system, the problem is
equivalent to finding the completion of the sparse system

S = {freq({i}) ≥ pi | i ∈ I} ∪ {freq(I) ≥ 0} .

It is easy to see that C(S) contains

freq(I) ≥

(∑

i∈I

pi − (|I| − 1)

)
,

since 〈 {i} | i ∈ I〉 is the only minimal cover of I using the single-itemsets.

3.1.6 Complexity of Deciding and Computing Comple-
tion

The following lemma is of key importance in assessing the complexity of
deciding whether a sparse system of frequent sets is complete.

Lemma 12 Let S = {freq(I1) ≥ p1, . . . , freq(In) ≥ pn} be a complete sparse
system of frequent sets over I. For every set Ij, j = 1 . . . n there exists a proof
database D such that D only contains transactions of the form (tid, I − i),
with i an item in Ij.

Proof
Because S is complete, there exists a proof database D for Ij in S. We now
transform this database in the following way: first, we add to every transac-
tion T in D the items I−Ij. In this way we get the database D′. Second, for

3.1. LOWER BOUNDS 65

every transaction (tid, J) ∈ D′ such that Ij − J is nonempty, we randomly
pick one item i in Ij − J , and we add the items in I − i to this transaction.
The resulting database is called D′′. In this way we do not affect the fre-
quency of the set Ij. From D to D′, we only added items that were not in Ij,
thus freq(Ij,D) = freq(Ij,D

′). In the second step, from D′ to D′′, we added
items to transactions that did not contain Ij. But, we made sure that we
did not add all items of Ij, and thus, the number of transactions containing
Ij remained the same. Therefore, freq(Ij,D) = freq(Ij,D

′′). For the other
itemsets, the frequency can only become higher from D to D′′, since we only
added items. Thus, D′′ still satisfies S, and freq(Ij,D) = pj. 2

Example 11 Consider the proof-database

D =

TID Items

1 a, b, c
2 a, b, d
3 a, b
4 c
5 b

for freq(abc) ≥ 0.2 in

S =

{
freq(ab) ≥ 0.6 freq(bc) ≥ 0.2 freq(ac) ≥ 0.2 freq(abc) ≥ 0.2
freq(d) ≥ 0.2 freq(ad) ≥ 0.1 freq(ef) ≥ 0

}
.

We construct D′ by adding d, e, and f to every transaction in D.

D′ =

TID Items

1 a, b, c, d, e, f
2 a, b, d, e, f
3 a, b, d, e, f
4 b, d, e, f
5 c, d, e, f

.

Then, every transaction that does not contain abc is extended until it contains
all items of abc but one. In this way we get D′′. For example, to transaction
4 we add c, and to transaction 5 we add a.

D′′ =

TID Items

1 a, b, c, d, e, f
2 a, b, d, e, f
3 a, b, d, e, f
4 b, c, d, e, f
5 a, c, d, e, f

.

66 CHAPTER 3. LOWER AND UPPER BOUNDS IN ISOLATION

D′′ is still a proof-database for freq(abc) ≥ 0.2 in S, and D′′ only has trans-
actions (tid, J) with J one of I − a, I − b, and I − c. 2

The lemma allows us to restate the problem of finding the best lower
bound for Ij as minimizing the frequency of Ij over these special kinds of
databases.

Theorem 13 Let S = {freq(I1) ≥ p1, . . . , freq(In) ≥ pn} be a sparse system
of frequent sets. S is complete if and only if for each j = 1 . . . n, pj equals
the solution of the following linear programming problem:

Minimize x subject to

 ∑

i∈Ij−I1

xi

+ x ≥ p1

. . .
 ∑

i∈Ij−In

xi

+ x ≥ pn

(∑

i∈I

xi

)
+ x = 1

xi ≥ 0 ∀i ∈ I
x ≥ 0

Proof
If. Suppose l is the solution of the linear program. Then there exist values for
the variables such that all inequalities is satisfied. Let d be the least common
multiple of the denominators of the values for the variables. The database
that consists of dxi transactions with as set of items I − i, for all i ∈ Ij, and
x transactions with as set of items I, is a proof database for Ij in S.
Only If. Because of Lemma 12, there exists a proof database D for Ij in S
that only contains transactions with as set of items either I or I − i for an
i ∈ Ij. The assignments

x :=
|{(tid, I) ∈ D | I = I}|

|D|
, and xi :=

|{(tid, I) ∈ D | I = I − i}|

|D|

are a solution to the system of inequalities. Because of the If-part, this so-
lution results in the smallest value for x, because otherwise S would not be
complete. 2

3.2. UPPER BOUNDS 67

Corollary 1 Deciding whether a sparse system of frequent sets is complete,
and computing the completion of a sparse system of frequent sets can both be
done in polynomial time.

Proof
It is well known that linear programming can be done in polynomial time [69].
2

3.2 Upper Bounds

3.2.1 System of Infrequent Sets

We introduce a system of infrequent sets as a full collection of infrequent set
expressions. Logical implication and completeness of systems are as defined
for sets of frequency constraints. In this chapter we will often use freq(I) ≤ l
to denote the frequency constraint freq(I) ∈ [l, 1].

Definition 12 Let I = {i1, . . . , in} be a set of items, and P be a set of
subsets of I.

- A (sparse) system of infrequent sets over I is a collection

{freq(I) ≤ uI | I ∈ P}

of infrequent set expressions.

- A system of infrequent sets S = {freq(I) ≤ uI | I ∈ P} is complete if
for all freq(I) ≤ u with I ∈ P, that are logically implied by the system,
uI ≤ u holds.

2

3.2.2 Axioms for Complete Systems of Infrequent Sets

The following two axioms are sound and complete for complete systems of
infrequent set expressions.

IF1 {} ≤ 1

IF2 If I1 ⊆ I2, then uI2 ≤ uI1

68 CHAPTER 3. LOWER AND UPPER BOUNDS IN ISOLATION

Theorem 14 IF1 and IF2 are sound and complete for complete systems
of infrequent sets.

Proof
Soundness is straightforward.
Completeness Suppose S = {freq(I) ≤ uI | I ⊆ I} satisfies IF1 and IF2.
We will proof the system is complete by constructing a database DI for each
I such that DI |= S, and freq(I,DI) = pI . Let I = {i1, . . . , ik}, and uI =

p

q
.

DI =

TID Items

1 i1, . . . , ik
.
p i1, . . . , ik

p+ 1 φ
.
q φ

It is now clear that freq(I,DI) = uI , and if J ⊆ I, then due to IF2 is
uI ≤ uJ , and thus freq(J,DI) = uI ≤ uJ . If J 6⊆ I, then freq(J,DI) = 0 ≤ uJ .
2

Surprisingly, this axiomatization and the proof of the completeness is
almost trivial, whereas in the frequent set case the axiomatization was very
hard to prove, and included a rather complex third rule F3. In the infrequent
case, apparently no counterpart of rule F3 is needed.

Because of these two simple axioms, deciding whether a system of infre-
quent sets is closed and computing the closure is very simple.

Theorem 15 Deciding whether a system of infrequent sets is complete and
computing the completion of a system of infrequent sets can both be done with
only logarithmic space on a work tape.

Proof
We will only give the procedure for computing the closure. The result for
the decision problem is then trivial.

The main idea is to maintain counters. One counter is used to keep the
position of the set in the input under consideration. The other counter is
then used to scan the input searching for supersets of the current set. If such
a superset is found, it is checked whether the upper bound on the frequency
of this superset is lower than the lowest found so far. To keep track of the
lowest frequency found so far, yet another, third counter is used. Once the
end of the tape is reached while scanning for supersets, the current set is

3.3. LOWER AND UPPER BOUNDS TOGETHER 69

printed on the output tape, together with the frequency pointed to by the
third counter. Since, in the simulation, we only use three counters, the re-
quired space on the work tape is logarithmic in the size of the input. 2

3.3 Lower and Upper Bounds Together

The axioms for the lower bounds and the axioms for the upper bounds to-
gether do not form a complete axiomatization for arbitrary systems of fre-
quency constraints. Thus, in arbitrary systems, lower bounds of one set
can influence the upper bounds of another and vice versa, as the following
example illustrates.

Example 12 Let C be the set of frequency constraints we also used in the
example in Subsection 2.1.3, to show that Apriori does not prune perfectly.

C =

freq(a) ∈

[
2

3
,
2

3

]
, freq(b) ∈

[
2

3
,
2

3

]
, freq(c) ∈

[
2

3
,
2

3

]
,

freq(ab) ∈

[
1

3
,
1

3

]
, freq(ac) ∈

[
1

3
,
1

3

]
, freq(bc) ∈

[
1

3
,
1

3

]

Notice that C is complete in the sense that for all expressions freq(I) ∈ [l, u]
in C it holds that C |=tight freq(I) ∈ [l, u]. That is, C contains explicitly all
information (implicitly) implied by it, as the following proof-database shows.

D =

TID Items

1 a, b
2 a, c
3 b, c

In Subsection 2.1.3, we saw that

C |=tight freq(abc) ∈ [0, 0] .

However, if we use the axioms for the lower bounds and the upper bounds,
we can only derive

C |= freq(abc) ∈

[
0,

1

3

]
.

70 CHAPTER 3. LOWER AND UPPER BOUNDS IN ISOLATION

A proof-database for freq(abc) ≤ 1
3
in

CU =

freq(a) ≤
2

3
, freq(b) ≤

2

3
, freq(c) ≤

2

3
,

freq(ab) ≤
1

3
, freq(ac) ≤

1

3
, freq(bc) ≤

1

3

freq(abc) ≤
1

3

is for example the following:

DU =

TID Items

1 a, b, c
2 a
3 b

2

This result is however not a surprise; FREQSAT is NP-complete, and
deriving both lower and upper bounds can be done deterministically in poly-
nomial time.

4
Point Intervals

In this chapter we discuss the most interesting special case. This case is
based on the information we have in the Apriori-algorithm.

The main goal of this chapter is to present several new methods to identify
redundancies in the set of all frequent itemsets and to exploit these redun-
dancies, resulting in a concise representation of all frequent itemsets and
significant performance improvements of a mining operation. Therefore, we
study deduction rules for the entailment of tight bounds on a target itemset
I, when we know the frequencies of all the subsets of I exact. That is, we
give a complete set of deduction rules to derive the interval [l, u] such that

C |=tight freq(I) ∈ [l, u] ,

with C a set of frequency constraints that consists of exactly one expression
freq(J) = fJ for each J ⊂ I.

Based on these deduction rules, the notion of derivable itemsets is intro-
duced. Let D be a given database, and let freq(J,D) = fJ for all itemsets J .
An itemset I is called derivable in D if

{freq(J) = fJ | J ⊂ I} |=tight freq(I) = fI .

Hence, the frequency of I can be determined perfectly from the frequencies
of the subsets. Derivable itemsets are interesting, in the sense that they
represent redundant information. They will be very important in the appli-
cations we discuss in Chapter 6. We give interesting properties of derivable
itemsets, and based on these properties we give the NDI-algorithm that finds
all frequent itemsets that are not derivable.

Bibliographic Note Large parts of this chapter were already published
in [14, 15]. The paper [15] received the Best Paper Award at the European
Conference on Principles of Data Mining and Knowledge Discovery (PKDD)
in Helsinki, 2002.

71

72 CHAPTER 4. POINT INTERVALS

4.1 Deduction Rules

4.1.1 Fraction and Extension

We describe sound and complete rules for deducing tight bounds on the
support of an itemset I ⊆ I, if the supports of all its subsets are given. In
order to do this, we will not consider itemsets that are no subset of I, and we
can assume that all items in D are elements of I. Indeed, “projecting away”
the other items in a transaction database does not change the supports of
the subsets of I.

Definition 13 (I-Projection) Let I ⊆ I be an itemset.

- The I-projection of a transaction T = (tid, J), denoted πIT , is defined
as πIT =def (tid, I ∩ J) .

- The I-projection of a transaction database D, denoted πID, consist of
all I-projected transactions from D.

2

Lemma 13 Let I, J be itemsets, with J ⊆ I. For every transaction
database D, the following holds:

freq(J,D) = freq(J, πID).

Before we introduce the deduction rules, we first extend the definition of
fraction and we introduce extension.

Definition 14 (J-Fraction) Let I, J be itemsets, such that J ⊆ I. The
J-fraction of πID, denoted by F I

J(D) is defined as

F I
J(D) =def

{(tid, J ′) ∈ D | J ′ ∩ I = J}

|D|
.

2

If D is clear from the context, we will write F I
J , and if I = I, we will

write FJ . For each set I, the frequency of an itemset J ⊆ I is then

freq(J,D) =
∑

J⊆K⊆I

F I
K .

4.1. DEDUCTION RULES 73

Definition 15 (Extension) Let I ⊆ I be an itemset. The extension of I
in D, denoted by ext(I,D), consists of all transactions in D that contain I.
2

We will write ext(I) if D is clear from the context.

4.1.2 Inclusion-Exclusion Principle

Let I, J ⊆ I be itemsets, and J ⊆ I, I − J = {a1, . . . , an}. Notice that

ext(I) =
n⋂

i=1

ext(J ∪ {ai}) ,

and that ∣∣∣∣∣
n⋃

i=1

ext(J ∪ {ai})

∣∣∣∣∣ = |ext(J)| − F
I
J |D| .

From the well-known inclusion-exclusion principle [55, p.181] we learn
∣∣∣∣∣
n⋃

i=1

ext(J ∪ {ai})

∣∣∣∣∣ =
∑

1≤i≤n

|ext(J ∪ {ai})|

−
∑

1≤i<j≤n

|ext(J ∪ {ai, aj})| (4.1)

+ · · ·

−(−1)n|ext(I)| ,

and since

freq(J ∪ {ai1 , . . . , ai`}) =
|ext(J ∪ {ai1 , . . . , ai`})|

|D|
,

we obtain

(−1)nfreq(I)−F I
J = −freq(J) +

∑

1≤i≤n

freq(J ∪ {ai})

−
∑

1≤i<j≤n

freq(J ∪ {ai, aj})

+ · · ·

+ (−1)n
∑

1≤i≤n

freq(I − {ai})

74 CHAPTER 4. POINT INTERVALS

Thus,

freq(I)− (−1)nF I
J =

∑

J⊆J ′⊂I

(−1)|I−J
′|+1freq(J ′) .

From now on, we will denote the sum on the right-hand side of this last
equation by σ(J, I). Notice that in σ(J, I) exactly all supersets of J appear
that are also subset of I.

Since F I
J is always positive, we obtain the following theorem.

Theorem 16 For all itemsets I, J ⊆ I, with J ⊆ I, σ(J, I) is a lower
(upper) bound on freq(I) if |I − J | is even (odd). The difference |freq(I) −
σ(J, I)| is given by F I

J .

We will refer to the rule involving σ(J, I) as RI(J) and omit I when clear
from the context.

Corollary 2 None of the rules RI(J) is redundant. For all itemsets J ⊆ I
there exists a database D such that RI(J) gives the unique best approximation
for the frequency of I.

Proof
According to Theorem 16 the difference |freq(I)− σ(J, I)| is given by F I

J .
Consider now a database in which for every subset J ′ 6= J of I there is a
transaction T with set of items J ′. It is clear that in this database, for every
subset J ′ 6= J of I, F I

J ′ > 0, and F I
J = 0. Therefore, |freq(I)− σ(J ′, I)| > 0

for all subsets J ′ of I, except for J . Thus, RI(J) gives the unique best ap-
proximation for the frequency of I. 2

4.1.3 Completeness of the Rules

If for each subset J ⊂ I, the frequency freq(J,D) = fJ is given, then the
rules RI(.) allow for calculating lower and upper bounds on the frequency of
I. Let l denote the greatest lower bound and u the least upper bound we can
derive with these rules. Since the rules are sound, the frequency of I must
be in the interval [l, u]. We will show that these bounds on the frequency
of I are tight ; that is, for every smaller interval [l′, u′] ⊂ [l, u], we can find
a database D′ such that for each subset J of I, freq(J,D′) = fJ , but the
frequency of I is not within [l′, u′].

4.1. DEDUCTION RULES 75

Recall Lemma 2:

Let

C = {freq(I1) ∈ [l1, u1], . . . , freq(In) ∈ [ln, un]}

be a set of frequency constraints over I. There exists a transac-
tion database D over I that satisfies C, if and only if the following
system of inequalities P(C) has a rational solution in the variables
XI , I ⊆ I.

P(C) =def

∑

I⊆I

XI = 1

li ≤
∑

Ii⊆I⊆I

XI ≤ ui ∀i = 1, . . . , n

Corollary 3 Given a set of items I, I ⊆ I, and a rational number fJ
for each J ⊆ I. There exists a transaction database D satisfying ∀J ⊆
I : freq(J,D) = fJ if and only if the following system of inequalities has a
solution.

XJ ≥ 0 ∀J ⊆ I∑
J⊆I XJ = 1∑
J⊆K⊆I XK = fJ ∀J ⊆ I

Proof
The proof is based on Lemma 13 and Lemma 2. Using Lemma 13, we can
assume that we are working in a transaction database D over I instead of
over I. The system of inequalities now follows from Lemma 2. 2

Theorem 17 Let I be an itemset, and let for each J ⊆ I, fJ be a rational
number. There exists a database that satisfies

{freq(J) = fJ | J ⊆ I},

if and only if f{} = 1, and for all J ⊆ I, the rule RI(J) is obeyed.

Therefore, for every itemset I ⊆ I, the rules {RI(J) | J ⊆ I} are sound
and complete for deducing tight bounds on the frequency of I based on the
frequencies of all subsets of I.

Proof
If. Let I be an itemset, and D a transaction database over I. Let fJ denote

76 CHAPTER 4. POINT INTERVALS

freq(J,D), for all J ⊆ I. From Lemma 3, we derive the following equalities.

f{} = F{} + Fa + Fb + Fc + Fd + . . .+ Fab + Fac + . . .+ FI

fa = Fa + Fab + Fac + . . .+ Fabc + Fabd + . . .+ FI

fb = Fb + Fab + Fbc + . . .+ Fabc + Fabd + . . .+ FI

.
fab = Fab + Fabc + Fabd + . . .+ FI

.
fI−a = F(I−a) + FI
fI = FI

(4.2)

This system of equalities contains 2|I| equations and 2|I| variables. Thus, we
can eliminate the fractions FJ . The solution of this system is then:

F{} = f{} − fa − fb − fc − fd + fab + . . .− fabc − . . .+ (−1)|I|fI
Fa = fa − fab − fac − . . .+ fabc + . . .− fabcd − . . .+ (−1)|I|−1fI
.
Fab = fab − fabc − fabd − . . .+ fabcd + fabce + . . .+ (−1)|I|−2fI
.
FI−a = fI−a − fI
FI = fI

(4.3)
Thus, the values of the fJ ’s determine the values of the FJ ’s uniquely and
vice versa. Therefore, there is a 1-1 correspondence between the assignments
of the fJ ’s and the assignments for the FJ ’s.

On the other hand, we know that the solution in the FJ ’s represents a
valid transaction database if and only if the following conditions are satisfied
by the solution:

F{} ≥ 0

Fa ≥ 0
Fb ≥ 0
.
FI ≥ 0
F{} + Fa + Fb + . . .+ FI = 1

(4.4)

By applying these conditions to the solution of (4.2), we get the following

4.1. DEDUCTION RULES 77

conditions.

(−1)|I|fI ≥ 1−
[
(−1)|I|(fI−a + fI−b + . . .) + (−1)|I|−1(fI−ab + . . .)

+ . . .+ fa + fb + . . .
]

(−1)|I|−1fI ≥ −fa + fab + fac + . . .− fabc − . . .+ fabcd . . .
.
(−1)|I|−2fI ≥ −fab + fabc + fabd + . . .− fabcd − fabce − . . .

+fabcdef + fabcdeg + . . .
.
−fI ≥ fI−a
fI ≥ 0
f{} = 1

(4.5)
These inequalities are exactly the rules RI(J), J ⊆ I. We can thus con-
clude that there exists a database that satisfies {freq(J) = fJ | J ⊆ I} if all
rules RI(J), J ⊆ I are satisfied, because a choice of fJ ’s that satisfies (4.5)
corresponds to an assignment for the fractions that determine a transaction
database. This database D must have freq(J,D) = fJ , for all J ⊆ I, because
of the 1-1 correspondence between the fractions and the frequencies.
Only If. This part is already established because we obtained the rules from
the (sound) inclusion-exclusion principle. 2

Example 13 Consider the following transaction database.

D =

TID Items

1 a, b, c
2 a, c, d
3 a, b, d
4 c, d
5 b, c, d
6 a, d
7 b, d
8 b, c, d
9 b, c, d
10 a, b, c, d

fa = 5
10
, fb = 7

10
, fc = 7

10
,

fd = 9
10
, fab = 3

10
, fac = 3

10
,

fad = 4
10
, fbc = 5

10
, fbd = 6

10
,

fcd = 6
10
, fabc = 2

10
, fabd = 2

10
,

facd = 2
10
, fbcd = 4

10
.

Figure 4.1 gives the rules to determine tight bounds on the frequency of abcd.
Using these deduction rules, we derive the following bounds on freq(abcd,D)
without counting in the database.

78 CHAPTER 4. POINT INTERVALS

fabcd ≥ fabc + fabd + facd + fbcd − fab − fac − fad R({})
−fbc − fbd − fcd + fa + fb + fc + fd − 1

fabcd ≤ fa − fab − fac − fad + fabc + fabd + facd R(a)
fabcd ≤ fb − fab − fbc − fbd + fabc + fabd + fbcd R(b)
fabcd ≤ fc − fac − fbc − fcd + fabc + facd + fbcd R(c)
fabcd ≤ fd − fad − fbd − fcd + fabd + facd + fbcd R(d)
fabcd ≥ fabc + fabd − fab R(ab)
fabcd ≥ fabc + facd − fac R(ac)
fabcd ≥ fabd + facd − fad R(ad)
fabcd ≥ fabc + fbcd − fbc R(bc)
fabcd ≥ fabd + fbcd − fbd R(bd)
fabcd ≥ facd + fbcd − fcd R(cd)
fabcd ≤ fabc R(abc)
fabcd ≤ fabd R(abd)
fabcd ≤ facd R(acd)
fabcd ≤ fbcd R(bcd)
fabcd ≥ 0 R(abcd)

Figure 4.1: Tight bounds on fabcd. fI denotes freq(I)

Lower bound: fabcd ≥
1
10

(Rule R(ac))
Upper bound: fabcd ≤

1
10

(Rule R(a))

Therefore, we can conclude, without having to scan the database, that the
frequency of abcd in D is exactly 1

10
, while a standard monotonicity check

would yield an upper bound of 2
10
. 2

4.2 Non-Derivable Itemsets

Based on the deduction rules, it is possible to generate a summary of the
set of frequent itemsets. Indeed, suppose that the deduction rules allow
for deducing the frequency of a frequent itemset I exactly , based on the
frequencies of its subsets. Then there is no need to explicitly count the
frequency of I requiring a complete database scan; if we need the frequency
of I, we can always derive it using the deduction rules. Such a set I, of which
we can perfectly derive the frequency, will be called a Derivable Itemset (DI),
all other itemsets are called Non-Derivable Itemsets (NDIs). For each set I,
let LB I (UB I) denote the lower (upper) bound we can derive using the

4.2. NON-DERIVABLE ITEMSETS 79

deduction rules. Hence,

LB(I) =def max {σ(J, I) | |I − J | even} , and
UB(I) =def min {σ(J, I) | |I − J | odd} .

Since LB(I) and UB(I) use the frequency of the subsets of I, they depend
on the underlying database D.

Definition 16 An itemset I is called derivable in D if LB(I) = UB(I). 2

We show in this section that the set of frequent NDIs allows for computing
the frequencies of all other frequent itemsets, and as such, forms a concise
representation [62] of the frequent itemsets. To prove this result, we first
need to show that when a set I is not derivable, then neither are its subsets.

Lemma 14 (Monotonicity) Let I ⊆ I be an itemset, and i ∈ I − I an
item. Then

2|UB(I ∪ {i})− LB(I ∪ {i})|
≤ 2min(|freq(I)− LB(I)|, |freq(I)− UB(I)|)
≤ |UB(I)− LB(I)| .

In particular, if I is a DI, then also I ∪ {i} is a DI.

Proof
The proof is based on the fact that F I

J = F I∪{i}
J +F I∪{i}

J∪{I}. From Theorem 16

we know that F I
J is the difference between the bound calculated byRI(J) and

the real frequency of I. Let now J be such that the rule RI(J) calculates the
bound that is closest to the frequency of I. Then, the width of the interval
[LB(I),UB(I)] is at least 2F I

J . Furthermore, RI∪{i}(J) and RI∪{i}(J ∪ {i})
are a lower and an upper bound on the frequency of I ∪ {i} (if |I ∪ {i} −
(J ∪{i})| is odd, then |I ∪{i}−J | is even and vice versa), and these bounds

on I ∪ {i} differ respectively F I∪{i}
J and F I∪{i}

J∪{I} from the real frequency of

I ∪ {i}. When we combine all these observations, we get:

UB(I ∪ {i})− LB(I ∪ {i}) ≤ F I∪{i}
J + F I∪{i}

J∪{I} = F
I
J ≤

1

2
(UB(I)− LB(I)) .

2

This lemma gives us the following valuable insights.

Corollary 4 The width of the intervals shrinks exponentially with the size
of the itemsets. Hence, every set I with |I| > 2 log(|D|)+1 must be derivable
in D.

80 CHAPTER 4. POINT INTERVALS

Proof
For the singleton sets the bounds are [0, 1]. Let I = {i1, . . . , in}. Because of
Lemma 14,

|UB(I)− LB(I)| ≤
|UB(I − in)− LB(I − in)|

2
≤ . . .

≤
UB(i1)− LB(i1)

2n−1
=

1

2n−1
.

Furthermore, all frequencies counted in the database are of the form n
|D|

with
n a natural number, and hence, since no divisions are used in the rules, also
are the bounds. Therefore, for every set I of size larger than 2 log(D)+1, we

get bounds
[
L
|D|
, U
|D|

]
with U−L

|D|
< 1

|D|
, with U and L natural numbers. This

is only possible if L = U , and thus I is derivable. 2

This remarkable fact is a strong indication that the number of large NDIs will
be very small. This reasoning will be supported empirically in Section 4.5.

Corollary 5 If I is a NDI, and RI(J) gives the exact frequency of I, then
all supersets I∪{i} of I will be DI’s, with rules RI∪{i}(J) and RI∪{i}(J∪{i}).
That is, if freq(I,D) = σ(J, I), then

freq(I ∪ {i},D) = σ(I ∪ {i}, J) = σ(I ∪ {i}, J ∪ {i}) .
Proof
This can easily be derived from the proof of Lemma 14. 2

We will use Corollary 5 to avoid checking all possible rules for I ∪ {i}. This
avoidance can be done in the following way: whenever we calculate bounds
on the frequency of an itemset I, we remember the lower and upper bound
LB(I),UB(I). If I is a NDI; that is, LB(I) 6= UB(I), then we will have to
count its frequency. After we counted the frequency, the tests freq(I,D) =
LB(I) and freq(I,D) = UB(I) are performed. If one of these two equalities
obtains, then all supersets of I are derivable.

From Lemma 14, we easily obtain the following theorem, saying that the
set of NDIs is a concise representation.

Theorem 18 For a database D, and a threshold t, let NDIRep(D, t) be the
following set:

NDIRep(D, t) =def {(I, freq(I,D)) | freq(I,D) ≥ t ∧ LB(I) 6= UB(I)}.

NDIRep(D, t) is a concise representation for the frequent itemsets. That is,
for each itemset J not in NDIRep(D, t), we can decide whether J is frequent,
and if J is frequent, we can derive its frequency from the information in
NDIRep(D, t).

4.3. THE NDI-ALGORITHM 81

Proof
We show by induction on the cardinality of J how we can calculate this in-
formation from the set of frequent NDIs.
Base case. J = {} is trivial, since freq({}) = 1 always holds.
General case. Suppose we know of each subset I of J whether it is frequent,
and if I is frequent, we know freq(I,D) exact. If one of the subsets is in-
frequent, J must be infrequent as well. If all subsets are frequent, then we
know all the frequencies. These frequencies allow us to apply the deduction
rules and to derive bounds [l, u] on the frequency of J . If l = u, we know
the frequency of J exactly. If l 6= u, then J is a NDI, and thus either J is in
NDIRep, together with its frequency, or J is infrequent. 2

Suppose that we want to build the entire set of frequent itemsets starting
from the concise representation NDIRep. We can then use Corollary 5 to
improve the performance of deducing all frequencies. Suppose we need to
deduce the frequency of derivable sets I, J , with J ⊆ I. Instead of trying
all rules to find the exact frequency for I, we first evaluated J . Since J is a
DI, there is a rule RJ(K) that gives the exact frequency of J . Using 5, we
know that RI(K) gives the exact frequency of I. Hence, for I we only have
to evaluate the rule RI(K).

4.3 The NDI-Algorithm

Based on the results in the previous section, we propose a level-wise algorithm
to find all frequent NDIs. Since derivability is monotone, we can prune an
itemset if it is derivable. This gives the NDI-algorithm as shown in Figure 4.2.
The correctness of the algorithm follows from the results in Lemma 14.

Since evaluating all rules can be very cumbersome (step 15), in the ex-
periments we show what the effect is of only using a couple of rules. We will
say that we use rules up to depth k if we only evaluate the rules RI(J) for
|I − J | ≤ k. Experiments show that in most cases, the gain of evaluating
rules up to depth k instead of up to depth k − 1 typically quickly decreases
if k increases. Therefore, we can conclude that in practice most pruning is
done by the rules of limited depth.

82 CHAPTER 4. POINT INTERVALS

Input: Transaction database D, threshold t.
Output: Set NDI of all frequent non-derivable sets in D.

(1) NDI(D,s)
(2) i := 1; NDI := {}; C1 := {{i} | i ∈ I};
(3) for all I in C1 do I.l := 0; I.u := 1;
(4) while Ci not empty do
(5) Count the frequencies of all candidates in Ci

in one pass over D;
(6) Fi := {I ∈ Ci | freq(I,D) ≥ t};.
(7) NDI := NDI ∪ Fi;
(8) Gen := {};
(9) for all I ∈ Fi do
(10) if freq(I,D) 6= I.l and freq(I,D) 6= I.u then
(11) Gen := Gen ∪ {I};
(12) PreCi+1 := AprioriGenerate(Gen);
(13) Ci+1 := {};
(14) for all I ∈ PreCi+1 do
(15) Compute bounds [l, u] on frequency of I;
(16) if l 6= u then I.l := l; I.u := u;Ci+1 := Ci+1 ∪ {I};
(17) i := i+ 1
(18) end while
(19) return NDI;

Figure 4.2: The NDI-algorithm. AprioriGenerate is the standard proce-
dure of the Apriori-algorithm to generate new candidates. In fact, the set
AprioriGenerate(Gen) equals {I ∈ I | |I| = i+ 1,∀i ∈ I : I − {i} ∈ Gen}.

4.4 Halving Intervals at Minimal Cost

One of the main disadvantages of the algorithm proposed in the last section
is the fact that calculating the results of all rules can be very hard for large
sets I. Indeed, the number of rules is exponential in the size of the set I. For
each subset J of I, we need to evaluate the rule RI(J). Also, the length of
the rules increases dramatically. The number of terms in the rule RI(J) is
2|I−J | − 1. Thus, if we evaluate all rules brute force, the cost will be as high
as

|I|∑

i=0

(
|I|

i

)
(2i − 1) = 3|I| − 2|I| = O(3|I|) .

4.4. HALVING INTERVALS AT MINIMAL COST 83

Clearly, for large |I| this cost is unacceptable.

To overcome this problem we develop different strategies. First, we could
only evaluate rules of limited depth; that is, rules RI(J), where |I − J | is
limited by a predefined constant k. Together with Corollary 5, we can keep
the monotonicity of derivability. A disadvantage of this approach is that we
lose the guaranty that the interval size halves in each step. For example,
Corollary 4 no longer holds.

We show how we can maintain the halving of the interval sizes while only
evaluating two rules per itemset. The procedure is based on the proof of
Lemma 14. Since

|freq(I,D)− σ(J, I)| = F I
J = F I∪{i}

J + F I∪{i}
J∪{i}

and
F I∪{i}
J = |freq(I ∪ {i},D)− σ(J, I ∪ {i})|,

F I∪{i}
J∪{i} = |freq(I ∪ {i},D)− σ(J ∪ {i}, I ∪ {i})|,

it is true that

|freq(I,D)− σ(J, I)| = |σ(J, I ∪ {i})− σ(J ∪ {i}, I ∪ {i})| .

Suppose now that for each subset I − i of I we remember the deduction rule
RI−i(best(I− i)) that came closest to the actual frequency of I− i. We select
among the sets I − i the one with the smallest difference between the actual
support freq(I − i,D) and the bound calculated by RI−i(best(I − i)). Let
I − i be this set. Lemma 14 then guarantees that the rules RI(best(I − i))
and RI(best(I − i)∪{i}) compute an interval that is at most half the size of
the intervals of its supersets.

In the algorithm this adaptation results in a modification to step (15).
We replace step (15) with the following steps.

(15a) % Compute bounds [l, u] on frequency of I;
(15b) Let i := minargi∈I(|freq(I − i)− σ(best(I − i), I − i)|)
(15c) Calculate lI and uI with the rules RI(best(I − i))

and RI(best(I − i) ∪ {i}).
(15d) Let I.rules = {best(I − i), best(I − i) ∪ {i}} ;

After we counted the frequency of a set I we have to do some bookkeeping
to set best(I) to the right set. This can for example be done in the loop
(9)-(11): we add the following lines in the loop (9)-(11), after step (11):

(11b) Let best(I) := minargJ∈I.rules(|freq(I)− σ(J, I)|);

84 CHAPTER 4. POINT INTERVALS

4.5 Experiments

4.5.1 Data set

The data set we used to perform the experiments is derived from the census-
data set as available in the UCI KDD-repository [47]. This data set is in se
a relational table, with 68 numerical attributes. We transformed this data
set into a transaction database in the following way: every (attribute,value)-
pair was considered as a different item. Notice that therefore a value a in
attribute A denotes another item as the same value a in another attribute
B. Using this convention, every tuple was transformed into a transaction
with 68 items. In order to speed-up the experiments, we only used a random
sample of 10000 transactions. The data set contains 396 different items.

4.5.2 Results

In the experiments give an empirical answer to the following questions:

(a) Pruning. How much can we reduce the search space using the deduction
rules? We tested both the situation in which the lower bound is above
the threshold (the set is certainly frequent), and the one in which the
upper bound is below the threshold (the set is certainly infrequent).

(b) Interval Width. How accurate are the bounds in predicting the actual
support of an itemset? We report, grouped by the cardinality of the
itemsets, the average width of the intervals [l, u].

(c) Size of the concise representation. How big is the concise representation
NDIRep(D, s) w.r.t. the complete set of frequent itemsets?

(d) Strength of the deduction rules. Which one of the rules contributes
most to the bounds? Can we restrict ourselves to only evaluating a
couple of rules?

Pruning In this test we want to see how much pruning is performed by
the deduction rules. The results are given in Table 4.1. We mined the
transaction database at different support levels, and we record in every pass
of the Apriori-algorithm the following measures: (a) the number of candidate
itemsets, (b) the number of frequent itemsets, (c) the number of itemsets for
which the lower bound is above the support threshold, and (d) the number
of itemsets for which the upper bound is below the support threshold.

4.5. EXPERIMENTS 85

Support = 90%, all 396 items
(a) (b) (c) (d)

1 396 20
2 190 159 151 0
3 750 598 592 152
4 1512 1170 1170 342
5 1469 1186 1186 283

. . .

Support = 90%, 100 items
(a) (b) (c) (d)

1 100 20
2 190 159 151 0
3 750 598 592 152
4 1512 1170 1170 342
5 1469 1186 1186 283
6 710 622 622 88
7 170 165 165 5
8 16 16 16 0
9 1 1 1 0

Support = 10%, all 396 items
(a) (b) (c) (d)

1 396 133
2 8778 5444 3085 0
3 131258 121875 117089 2089
4 1853220 1809695 1802860 35491

. . .

Support = 10%, 20 items
(a) (b) (c) (d)

1 20 16
2 120 101 72 0
3 355 348 347 2
4 759 754 752 5
5 1091 1050 1050 41
6 985 974 974 11
7 623 621 621 2
8 278 278 278 0
9 82 82 82 0
10 14 14 14 0
11 1 1 1 0

(a) number of candidate itemsets,
(b) number of frequent itemsets,
(c) number of itemsets with l ≥ ts, and
(d) number of itemsets with u < ts.

Table 4.1: Experiments w.r.t. pruning

86 CHAPTER 4. POINT INTERVALS

It is important to remark that in these counts only the itemsets that are
not pruned by the monotonicity rule are evaluated with the deduction rules.
Thus, the numbers we give represent pruning additional to the monotonicity
rule. From these tests it is clear that the amount of pruning done by the
monotonicity rule can be improved dramatically. For example, in all tests,
from pass 4 on, for almost all sets, we know in advance whether or not they
are frequent.

Interval width In Table 4.2, we report the mean width of the intervals per
iteration. We pay special attention to derivable sets. We mined for frequent
itemsets at different support levels and we report for each loop of the Apriori-
algorithm the following measures: (a) the number of frequent sets, (b) the
mean interval width, (c) the number of candidate itemsets for which l = u,
and (d) and (e) the number of candidate itemsets with interval width at most
0.1%, respectively 0.05%.

From the tests we see that the width decreases very fast. After pass 4, in
all our tests, we know exactly the frequencies of all sets that follow.

Concise representations In this test we measure how large a concise rep-
resentation of the set of frequent itemsets would be. Table 4.3 gives |NDIRep|
and the number of frequent sets. In the tests, the concise representation is
much smaller than the actual set of frequent itemsets.

Strength of deduction rules We study how much the different rules
contribute to the bounds. The amount of work one has to do to evaluate
σ(J, I) is exponential in |I−J |. Therefore, at a certain depth there must be a
trade-off between on the one hand evaluating more rules and as such getting
better bounds, and on the other hand evaluating less rules, and possibly
counting too many itemsets. In Fig. 4.3, we illustrate the trade-off. We
performed 9 experiments: in the ith experiment we only evaluate rules up
to depth i. This implies that for i < j, we have more pruning in the jth
experiment than in the ith, but at the cost of evaluating more rules. The
horizontal axis contains the depth up to which we evaluate the rules. On the
left axes we present the number of itemsets counted by the NDI-algorithm,
and on the right axes the time needed for mining these itemsets. The figure
shows that the number of itemsets we need to count decreases when we
increase the depth. However, the evaluation time for the rules also increases.
In the experiment evaluating rules of more than depth 2 does not give much
extra reduction in the number of counts, while the evaluation time of the
rules grows.

4.5. EXPERIMENTS 87

Support = 90%, all 396 items
(a) (b) (c) (d) (e)

1 396
2 190 2.16% 0 0 19
3 750 0.029% 313 625 697
4 1512 ≈ 0% 1494 1512 1512
5 1469 0% 1469 1469 1469

. . .

Support = 10%, 20 items
(a) (b) (c) (d) (e)

1 20
2 120 7.5% 0 0 0
3 355 0.21% 71 170 201
4 759 ≈ 0% 590 746 756
5 1091 ≈ 0% 1087 1091 1091
6 985 0% 985 985 985
7 623 0% 623 623 623
8 278 0% 278 278 278
9 82 0% 82 82 82
10 14 0% 14 14 14
11 1 0% 1 1 1

(a) number of frequent sets,
(b) mean interval width,
(c) number of sets with l = u,
(d) number of sets with width ≤ 0.1%, and
(e) number of sets with width ≤ 0.05%.

Table 4.2: Experiments w.r.t. interval width

Support |I| #Freq |NDIRep|
90% 100 3937 634
10% 20 4239 569
1% 10 255 113

Table 4.3: Experiments w.r.t. size of NDIRep

88 CHAPTER 4. POINT INTERVALS

100000

200000

300000

400000

500000

600000

700000

800000

900000

1e+06

0 1 2 3 4 5 6 7 8
50

100

150

200

250

300

350

nu
m

be
r

of
 N

D
Is

tim
e

in
 s

ec
on

ds

rule depth

concise representation
NDI

NDI+DI

Figure 4.3: Strength of deduction rules.

For more experiments we refer to the paper [15].

4.6 Support versus Frequency

In the special case presented in this chapter, we could as well have used
support instead of frequency. Indeed, none of the proofs relies on the fact
that we use frequencies instead of support. This implies that in this special
case,

{freq(J) = fJ | J ⊂ I} |=tight freq(I) ∈ [l, u]

is true if and only if

{support(J) = d · fJ | J ⊂ I} |=tight freq(I) ∈ [d · l, d · u] ,

with d the least common multiplier of the denominators of the numbers
in {fJ | J ⊂ I}. In [15], the results in this chapter are presented with
supports. The equivalence between support and frequency in this case can
also be proven without replacing all occurrences of freq(.) by support(.) in
this chapter. Since none of the rules RIJ does use division, the bounds can
always be expressed with d as denominator. Furthermore, the fractions in
a database can be calculated from the frequencies, using only addition and
substraction (see for example the system (4.3) in the proof of Theorem 17).
Hence, the proof databases can always be constructed in such a way that
they contain exactly d transactions.

5
Generic Construction of Axioms

In this chapter we show how we can construct an axiomatization for special
cases of FREQSAT and T-FREQENT. This generic construction is based on
the Fourier-Motzkin elimination method [22, pp. 84] for linear systems of
inequalities. First we give a new and simpler system of inequalities based on
the theory in Chapter 4. This system of inequalities has a solution if and only
if there exists a transaction database that fulfills certain conditions. In this
system of inequalities we then eliminate all spurious variables. The result is
an axiomatization for the special case.

5.1 New Existence Condition

Let for each I ⊆ I, fI be a rational number. Theorem 17 states that there
exists a database with freq(I,D) = fI if and only if f{} = 1, and for each
I ⊆ I, the rules RI(I) are satisfied. From this we can derive the following
corollary.

Corollary 6 The set of frequency constraints

C = {freq(I1) ∈ [l1, u1], . . . , freq(In) ∈ [ln, un]}

is satisfiable if and only if there exist rational numbers fI , I ⊆ I such that

(1) fIj ∈ [lj, uj], ∀j = 1, . . . , n, and

(2) freq(I) = fI for all I ⊆ I, respects the rules RI(J), J ⊆ I, and
f{} = 1.

Proof
The second condition makes sure that there exists a database D such that for
all J ⊆ I, freq(J,D) = fJ . The first condition assures that freq(Ij,D) = fIj
is in the interval [lj, uj], for all j = 1, . . . , n. 2

89

90 CHAPTER 5. GENERIC CONSTRUCTION OF AXIOMS

Example 14 The set of frequency constraints

C =

{
freq(a) ∈

[
0,

1

2

]
, freq(ab) ∈

[
1

2
,
3

4

]
, freq(abc) ∈

[
1

2
,
3

4

]}

has a solution if and only if the following system of inequalities has a solution:

fabc ≥ 0
fab ≥ fabc
fac ≥ fabc
fbc ≥ fabc
fabc ≥ fab + fac − fa
fabc ≥ fab + fbc − fb
fabc ≥ fac + fbc − fc
fab + fac + fbc − fa − fb − fc + 1 ≥ fabc

fa ≥ 0
1
2
≥ fa

fb ≥
1
2

3
4
≥ fa

fab ≥
1
2

3
4
≥ fab

2

5.2 Fourier-Motzkin Elimination

The Fourier-Motzkin elimination method [22, pp. 84] for systems of linear
inequalities works as follows.

Let

a11x1 + . . . + an1xn ≤ b1
. . .
a1mx1 + . . . + anmxn ≤ bm

be a system of inequalities. The Fourier-Motzkin elimination method allows
for eliminating x1, such that we get a system of inequalities in the variables
x2, . . . , xn that has a solution if and only if the original system has a solution.

First, we rewrite each of the inequalities by isolating x1. In this way we
get three types of inequalities:

(1) x1 ≥ . . .

5.2. FOURIER-MOTZKIN ELIMINATION 91

(2) x1 ≤ . . .

(3) Inequalities that do not contain x1.

Let

L =

{
−
ai2
ai1

x2 − . . .−
ain
ai1

xn +
bi
ai1

∣∣∣ ai1 > 0

}

U =

{
−
ai2
ai1

x2 − . . .−
ain
ai1

xn +
bi
ai1

∣∣∣ ai1 < 0

}

The equalities of type (1) are exactly the inequalities x1 ≥ α2x2+. . .+αnxn+
β such that α2x2 + . . . + αnxn + β is in L. Similarly, the equalities of type
(2) can be formed using the terms in U .

We now construct a new system that is equivalent to the original system,
but that does not contain x1. By equivalent we mean that the new system
has a solution if and only if the original system has one. The new system
is based on the observation that if we have an inequality x1 ≥ l, and an
inequality x1 ≤ u, then there exists an x1 fulfilling these two inequalities if
and only if l ≤ u has a solution. Indeed, if there is a solution such that
l ≤ u, we only need to pick a x1 in between the value of l and the value of u.
This assignment makes both inequalities true. Also, if there does not exist a
solution such that l ≤ u, there is no hope in making both inequalities true,
since, for this case, x1 ≥ l automatically implies x1 > u.

The new system thus consists of the inequalities of type (3) in the original
system, plus all inequalities l ≤ u, for all l ∈ L and u ∈ U .

For example, eliminating x1 in

x1 + 3x2 ≤ 5
x1 + x4 − 7x5 ≤ 3

−x1 + x3 ≤ 5
x3 + x5 ≤ 4

goes as follows: first we rewrite every formula such that we isolate x1.

x1 ≤ 5− 3x2

x1 ≤ 3− x4 + 7x5

−5 + x3 ≤ x1

x3 + x5 ≤ 4

92 CHAPTER 5. GENERIC CONSTRUCTION OF AXIOMS

Hence, L = {−5 + x3}, and U = {5− 3x2, 3− x4 + 7x5} The new system
is thus:

−5 + x3 ≤ 5− 3x2

−5 + x3 ≤ 3− x4 + 7x5

x3 + x5 ≤ 4

or, equivalent,
3x2 + x3 ≤ 10

x3 + x4 − 7x5 ≤ 8
x3 + x5 ≤ 4

This new system does no longer contain variable x1, and has a solution if
and only if the original system has one.

5.3 Construction of Axioms

Suppose now that we want to make axioms for the specific case that we have
3 items, and we know bounds on the sets a, b, and abc. We denote the
hypothetical bounds on a set I by [lI , uI]. Using the existence conditions of
Corollary 6, we get the following system.

fabc ≥ 0
fab ≥ fabc
fac ≥ fabc
fbc ≥ fabc
fabc ≥ fab + fac − fa
fabc ≥ fab + fbc − fb
fabc ≥ fac + fbc − fc
fab + fac + fbc − fa − fb − fc + 1 ≥ fabc

fa ≥ la
ua ≥ fa
fb ≥ lb
ub ≥ fa
fabc ≥ labc
uabc ≥ fabc

Thus, given bounds on a, b, and abc, there exists a database that fulfils them
if and only if the above system has a solution. It would however be nicer if we
had existence conditions that did not involve the variables fI . For this, we

5.3. CONSTRUCTION OF AXIOMS 93

can use the Fourier-Motzkin elimination method to eliminate all unwanted
variables.

First we eliminate fa. The inequalities involving fa are:

la ≤ fa
fab + fac − fabc ≤ fa

fa ≤ ua
fa ≤ fab + fac + fbc − fb − fc + 1− fabc

This gives the following system:

fabc ≥ 0
fab ≥ fabc
fac ≥ fabc
fbc ≥ fabc
fabc ≥ fab + fbc − fb
fabc ≥ fac + fbc − fc
fb ≥ lb
ub ≥ fb
fabc ≥ labc
uabc ≥ fabc

ua ≥ la
fab + fac + fbc − fb − fc + 1− fabc ≥ la
ua ≥ fab + fac − fabc
fbc − fb − fc + 1 ≥ 0

We then continue eliminating all other variables fI one by one. The final
result of all eliminations is:

0 ≤ ua
0 ≤ ub
0 ≤ uabc
la ≤ 1
lb ≤ 1
labc ≤ 1
la ≤ ua
lb ≤ ub
labc ≤ uabc

labc ≤ ua
labc ≤ ub

94 CHAPTER 5. GENERIC CONSTRUCTION OF AXIOMS

The first 9 conditions just state that the intervals [l, u] must contain at least
one possible frequency; i.e., [l, u] ∩ [0, 1] 6= {}. This translates to the condi-
tions l ≤ u, l ≤ 1, u ≥ 0. These conditions look a little strange because we
did not explicitly require that l, u ∈ [0, 1]. The last three conditions state a
form of the monotonicity rule; the lower bound on abc must always be smaller
than the upper bounds of a and b. Thus, these conditions together with the
implicit assumption that l, u ∈ [0, 1] for all bounds, gives the following 5
axioms for the special case in which bounds on a, b, and abc have been given:

la ≤ ua
lb ≤ ub
labc ≤ uabc
labc ≤ ua
labc ≤ ub

5.4 Entailment

We can solve entailment problems with a slight variation on the method in
last section.

Suppose that we want to entail formulas that give tight bounds on the
frequency of abc in the case that {freq(a) ∈ [la, ua] , freq(b) ∈ [lb, ub]} has been
given. We construct a similar system as in last section:

fabc ≥ 0
fab ≥ fabc
fac ≥ fabc
fbc ≥ fabc
fabc ≥ fab + fac − fa
fabc ≥ fab + fbc − fb
fabc ≥ fac + fbc − fc
fab + fac + fbc − fa − fb − fc + 1 ≥ fabc

fa ≥ la
ua ≥ fa
fb ≥ lb
ub ≥ fa

In this system we eliminate all fI ’s except for fabc. This gives the following,

5.5. EXAMPLES 95

equivalent system:

la ≤ 1
lb ≤ 1
la ≤ ua
lb ≤ ub

fabc ≤ 1
fabc ≤ ua
fabc ≤ ub
0 ≤ fabc

The first 4 conditions are again existence conditions. The last 4 conditions
show that

{freq(a) ∈ [la, ua] , freq(b) ∈ [lb, ub]} |=tight freq(abc) ∈ [0,min {1, ua, ub}] .

5.5 Examples

In this section we give some examples of special cases denoted by “k → l, n
items”. We only concentrate on entailment problems. In the case “k → l, n
items” we assume that bounds have been given for all itemsets of cardinality
k. We then present rules for the frequency of a set of cardinality l. For
“2→ 3, 4 items”, for example, we assume that bounds on ab, ac, ad, bc, bd,
and cd have been given, and we want to entail tight bounds for abc. We only
present rules that involve the set of cardinality l, since only these rules are
important for the entailment.

5.5.1 2 → 3, 3 items

0 ≤ fabc
fabc ≤ uab
fabc ≤ uac
fabc ≤ ubc
fabc ≤ 1

lac + lbc − 1 ≤ fabc
lab + lbc − 1 ≤ fabc
lab + lac − 1 ≤ fabc

lab + lac + lbc
2

≤ fabc

96 CHAPTER 5. GENERIC CONSTRUCTION OF AXIOMS

5.5.2 2 → 3, 4 items

fabc ≤ uab
fabc ≤ uac
fabc ≤ ubc

fabc ≤ 1

fabc ≤ 1 + uad − lcd
fabc ≤ 1 + uad − lbd
fabc ≤ 1 + ubd − lcd
fabc ≤ 1− lbd + ucd
fabc ≤ 1− lad + ubd
fabc ≤ 1− lad + ucd

lad + lbc − 1 ≤ fabc
lac + lbd − 1 ≤ fabc
lac + lbc − 1 ≤ fabc
lab + lcd − 1 ≤ fabc
lab + lbc − 1 ≤ fabc
lab + lac − 1 ≤ fabc

lac + lbc + lbd − ucd − 1 ≤ fabc
lac + lad + lbc − ucd − 1 ≤ fabc
lab + lbc − ubd + lcd − 1 ≤ fabc
lab + lad + lbc − ubd − 1 ≤ fabc
lab + lac − uad + lcd − 1 ≤ fabc
lab + lac − uad + lbd − 1 ≤ fabc

fabc ≤ 1 + uab + uac − lad + ubc − lbd − lcd

−uab + lac + lad + lbc + lbd − ucd − 1 ≤ fabc
lab − uac + lad + lbc − ubd + lcd − 1 ≤ fabc
lab + lac − uad − ubc + lbd + lcd − 1 ≤ fabc

lab + lac + lbc − 1

2
≤ fabc

fabc ≤
1 + uab − lad − lbd + 2ucd

2

fabc ≤
1 + uac − lad + 2ubd − lcd

2

fabc ≤
1 + 2uad + ubc − lbd − lcd

2

5.5. EXAMPLES 97

fabc ≤ 1 + uab − lad − lbc − lbd + 2ucd
fabc ≤ 1 + uab − lac − lad − lbd + 2ucd
fabc ≤ 1 + uac − lad − lbc + 2ubd − lcd
fabc ≤ 1− lac + 2uad + ubc − lbd − lcd
fabc ≤ 1− lab + uac − lad + 2ubd − lcd
fabc ≤ 1− lab + 2uad + ubc − lbd − lcd
lad + lbd + lcd − 2 ≤ fabc
2lac + lad + 2lbc + lbd − ucd − 2

3
≤ fabc

2lab + lad + 2lbc − ubd + lcd − 2

3
≤ fabc

2lab + 2lac − uad + lbd + lcd − 2

3
≤ fabc

5.5.3 2 → 4, 4 items

0 ≤ fabcd

fabcd ≤ uab
fabcd ≤ uac
fabcd ≤ uad
fabcd ≤ ubc
fabcd ≤ ubd
fabcd ≤ ucd
fabcd ≤ 1

lad + lbc − 1 ≤ fabcd
lac + lbd − 1 ≤ fabcd
lab + lcd − 1 ≤ fabcd
uab + lac + lad + lbc + lbd − ucd − 1 ≤ fabcd
lab − uac + lad + lbc − ubd + lcd − 1 ≤ fabcd
lab + lac − uad − ubc + lbd + lcd − 1 ≤ fabcd

fabcd ≤ 1 + uab + uac − lad + ubc − lbd − lcd
fabcd ≤ 1 + uab − lac + uad − lbc + ubd − lcd
fabcd ≤ 1− lab + uac + uad − lbc − lbd + ucd
fabcd ≤ 1− lab − lac − lad + ubc + ubd + ucd

lad + lbd + lcd − 2 ≤ fabcd
lac + lbc + lcd − 2 ≤ fabcd
lab + lbc + lbd − 2 ≤ fabcd
lab + lac + lad − 2 ≤ fabcd

6
Concise Representations

Until recently, most research in itemset mining concentrated on extracting all
frequent sets as efficiently as possible. In this context, levelwise search [63]
based on the monotonicity of frequency [2], sampling [78] and efficient struc-
tures for counting [43] have been studied. However, often the result of the
mining operation itself is so large, that even enumerating all frequent sets is
impossible. This blow-up happens for example when we set the frequency
threshold too low, or when the data is heavily correlated. In the worst case,
the number of itemsets can even be exponential in the number of items.
Clearly, even the most efficient algorithms cannot enumerate such huge num-
bers of itemsets.

Recently concise representations [62] were proposed to address this prob-
lem. Instead of mining all frequent sets, a lossless representation is mined. A
concise representation typically is a subset of all frequent sets, together with
their frequency 1. From this reduced set, the complete collection of frequent
sets with their frequencies can be reconstructed. The representation then
serves as a basis for further exploration of the data. Also in the domain of
inductive databases [10] and in the context of concept lattices [76], concise
representations are very useful.

In this chapter, an overview of different approaches to construct a concise
representation is given. We discuss in-depth the following concise represen-
tations: free sets [9], closed sets [72, 73, 80, 75], disjunction-free sets [12, 56],
generalized disjunction-free sets [58, 57], and non-derivable itemsets [15]. We
extend the representation introduced in Chapter 4 and that is based on non-
derivable itemsets by using additional assumptions.

Based on a careful analysis of the strategies used in the different represen-
tations, we present a unifying framework for the existing representations and

1As we will show later on, in some proposals there might be infrequent sets in the
representation, as well as sets without their frequency. However, the ideas behind these
representations are similar in spirit.

99

100 CHAPTER 6. CONCISE REPRESENTATIONS

the ones we introduce. This framework gives an alternative representation
based on the deduction rules presented in Chapter 4.

6.1 Definition

In this chapter, we will implicitly assume that we are working over a trans-
action database D, and with a frequency threshold t. For example, we will
use FSET to denote FSET(D, t).

A Concise Representation of frequent sets is, loosely speaking, a subset of
FSET, completed with the frequencies, that allows for reconstructing FSET.
Therefore, based on the representation, for each itemset I, we must be able
to (a) decide whether I is frequent, and (b) if I is frequent, produce its fre-
quency. Clearly, from this point of view, a concise representation needs to
be defined with respect to a constructive procedure that performs extraction
of frequencies from representations. Mannila et al. introduced in [62] the
notion of a concise representation in a more general context. Our defini-
tion resembles theirs, but for reasons of simplicity, we only concentrate on
representations that are exact, and for frequent itemsets.

Definition 17 Let R be a function that takes a transaction database and
a frequency threshold as input. R is a representation of the frequent item-
sets if there exists a constructive procedure φ such that for each database D,
frequency threshold t, and itemset I, φ will, based on R(D, t),

(a) decide whether I is t-frequent, and

(b) if I is t-frequent, compute the frequency of I.

φ will be called the evaluation function of R. 2

In the definition we are deliberately vague about the image of R. In general,
any set of structures is allowed as image. We will however only concentrate
on structures that are based on collections of itemsets with associated fre-
quency counts. For such representations, the term concise will refer to the
space-efficiency of R; that is, R is called more concise than R′ if for every
database D and frequency threshold t, R(D, t) is smaller than R′(D, t). No-
tice however, that there necessarily is a trade-off between the space-efficiency
of R and the complexity of the evaluation function of R. In general, the more
concise R is, the more complex the evaluation function will be.

6.2. OVERVIEW 101

Example 15 Suppose that in FSET we have three sets I ⊂ J ⊂ K, with
freq(I) = freq(K). Since freq(I) ≥ freq(J) ≥ freq(K), there is no need to
store the frequency of J . Based on this observation, we define R be as follows:

R(D, t) =

{
(J, freq(J)) | J ∈ FSET ∧
6 ∃I ⊂ J ⊂ K : freq(I) = freq(K)

}
,

that is, R gives the set of all frequent itemsets, together with their frequen-
cies, except for the itemsets I that have a sub- and super-set with the same
frequency. R is a representation; a set J is in FSET if and only if there
is a superset of J in the representation. If J is frequent, then either J is
in the representation together with its frequency, or there are sets I,K with
I ⊂ J ⊂ K and freq(I,D) = freq(K,D) in the representation. 2

Let fI be the frequency of I in D. Notice that it is not necessary that for
each frequent set I,

R(D, t) |=tight freq(I) = fI .

Indeed, as we will see, the procedure φ can be any computation and does not
need to be based on logical implication.

6.2 Overview

We give an overview of the different existing concise representations. To
illustrate the representations, we will use the database D over the items
a, b, c, d given in Figure 6.1. All representations we discuss maintain the
itemset-frequency semantics. We will thus deal a lot with sets of itemsets
and sets of pairs (I, freq(I,D)). For notational convenience we introduce
ΠSets and ./ Freq . Let S be a set of itemsets.

S ./ Freq =def {(I, freq(I,D)) | I ∈ S} .

Let R be a set of itemset-support pairs.

ΠSetsR =def {I | (I, fI) ∈ R} .

The representations we consider in this chapter are n-tuples with each of
the components either subsets of 2I or 2I ./ Freq . Let now

R1(D, t) = (S1, . . . , Sk, Tk+1, . . . , Tn) and
R2(D, t) = (S ′1, . . . , S

′
l , T

′
l+1, . . . , Tm)

102 CHAPTER 6. CONCISE REPRESENTATIONS

TID Items

1 a, b, c, d
2 a, b, c
3 a, b, d
4 a, d
5 a, b, c

t = 3/5
φ

Infrequent

Frequent

abcd

abc abd acd bcd

ab ac ad bc bd cd

a b c d

5

4 3

2 1

5 3

4 3 3 3

3 2 1 1

1

Closed
ClosedRep
Free
FreqFree
Negative border

FreeRep}

Figure 6.1: Free and Closed sets representations

be two representations, with then Si’s and S
′
i’s subsets of 2

I ./ Freq , and the
Ti’s and T ′i ’s subsets of 2

I . We assume that both ΠSetsS1, . . ., ΠSetsSk, Tk+1,
. . ., Tn and ΠSetsS

′
1, . . ., ΠSetsS

′
l, T

′
l+1, . . ., T

′
m are collections of disjoint sets.

In the representations we study, this will always be the case. We say that
R1 is more concise than R2, denoted R1 v R2, if, for all D and t,

⋃

i=1...k

ΠSetsSi ⊆
⋃

j=1...l

ΠSetsS
′
j ,

and ⋃

i=k+1...n

Ti ⊆
⋃

j=1...l

ΠSetsS
′
j ∪

⋃

j=l+1...m

T ′j .

that is, every set in R1 must also be in R2, and every set in R1 that is
stored together with its frequency, must also be in R2 with its frequency. If
R1 v R2 and R2 v R1, then we say that R1 is equivalent with R2, and
denote this with R1 ≡ R2.

6.2.1 Free Sets Representations

A free set [9] or generator [56] is an itemset such that its frequency does not
equal the frequency of any of its subsets. In Figure 6.1, an example is given.
All free sets are encircled with a solid line. For example, the set bc is not free,
since its frequency equals the frequency of c. We will denote the collection
of all free sets by Free.

6.2. OVERVIEW 103

The free sets representation is based on the following observation.

Lemma 15 The frequency of I can be derived from

{J ⊆ I | J ∈ Free} ./ Freq

as follows:
freq(I) = min{freq(J) | J ⊆ I, J ∈ Free}

Proof
If I is free, then the result is straightforward. Otherwise, there exists a free
subset K of I, such that freq(I) = freq(K). Because of the monotonicity
principle, it is also true that the frequency of I is smaller than or equal to
the frequency of its subsets, and thus,

min{freq(J) | J ⊆ I ∧ J ∈ Free}
≤ freq(K) = freq(I) ≤

min{freq(J) | J ⊆ I ∧ J ∈ Free}

2

Another nice observation is that freeness of itemsets is anti-monotone;
that is:

Lemma 16 If an itemset is free, then its subsets are free as well.

Proof
Suppose that freq(I) = freq(I ∪{a}), then we can conclude that every trans-
action that contains all items in I, must also contain the item a, otherwise
the frequency of I∪{a} would be lower than the frequency if I. Let now J be
a superset of I ∪ {a}. Now, freq(J − {a}) = freq(J), since I ⊆ J − {a}, and
hence every transaction that contains J − {a}, also contains a. Therefore, if
a set is not free, then neither is any of its supersets. 2

We will now show how we can construct a representation based on the
free sets. Let

FreqFree =def (Free ∩ FSET) .

In spite of Lemma 15, FreqFree ./ Freq is not a concise representation, since
it does not allow to decide whether a set is frequent or not: consider the
example database given in Figure 6.1; the frequent free sets are indicated
with shaded circles. bc is not in FreqFree because it is not free, and bd is not

104 CHAPTER 6. CONCISE REPRESENTATIONS

in FreqFree because it is not frequent. It is however impossible to differentiate
between these two sets based on FreqFree ./ Freq alone;

FreqFree ./ Freq =

{
(φ, 1),

(
b,
4

5

)
,

(
c,
3

5

)
,

(
d,

3

5

)}

is symmetric in c and d. To overcome this problem, in [9, 56], it is proposed
to add a part of the cover of FreqFree to the representation. The cover of a
collection of itemsets S is

cover(S) =def {I | I 6∈ S ∧ ∀J ⊂ I : J ∈ S} .

In Figure 6.1, for example, cover(FreqFree) = {a, bc, bd, cd}. The free sets
representation now is the pair of sets

FreeRep =def
(FreqFree ./ Freq),
(cover(FreqFree) ∩ Free)

In Figure 6.1, the sets in cover(FreqFree) ∩ Free are indicated with dotted
circles. It is proven in [9] that FreeRep is a representation. We will give a
shorter and less involved proof than in [9], using the following lemma.

Lemma 17

(cover(FreqFree) ∩ Free) = cover(FSET)

Proof
Every itemset I in cover(FSET), is in Free, since every subset of I has fre-
quency higher than the frequency threshold, and I has frequency below the
threshold. Because of the anti-monotonicity of freeness, all subsets of I must
be free as well. Thus, all subsets of I are in FreqFree. Therefore, I is in
(cover(FreqFree)). It is also true that every itemset in (cover(FreqFree) ∩
Free) is in cover(FSET): every set in (cover(FreqFree) ∩ Free) is infrequent,
otherwise it would be in FreqFree, and thus not in cover(FreqFree). It is
in the cover(FSET), because every subset is in FreqFree and thus frequent.
Hence, cover(FreqFree) ∩ Free = cover(FSET). 2

The set cover(FSET) is called the negative border . Based on the negative
border it is easy to decide whether a set is frequent or not; if it is below the
negative border, then it is, when it is on or above the negative border, it
is not. In Figure 6.1, the sets in the negative border are indicated with a
dashed circle.

6.2. OVERVIEW 105

Theorem 19 FreeRep is a representation.

Proof
Based on Lemma 17, the proof is immediate. We can use the negative bor-
der to decide whether a set is frequent or not. If the set is frequent, we use
Lemma 15 to derive its support from FreqFree ./ Freq . 2

Notice that FreeRep contains infrequent sets. Therefore, it is possible
that in some cases, FreeRep is larger than FSET ./ Freq . We propose another
representation, FreeRep ′, that does not have this undesirable property.

FreeRep ′ =def

(
(FreqFree ./ Freq),
(cover(FreqFree) ∩ FSET)

)

Theorem 20 FreeRep ′ is a representation and all sets in it are always
frequent.

Proof
The sets in cover(FreqFree) are either frequent, or free, but not both. There-
fore,

cover(FreqFree) ∩ Free = cover(FreqFree)− cover(FreqFree) ∩ FSET .

Thus, we can derive FreeRep from FreeRep ′. 2

6.2.2 Closed Sets Representation

In short, a closed itemset [72] is an itemset such that its frequency does not
equal the frequency of any of its supersets. In [72], a closure operator cl(.)
on itemsets is introduced as follows: let I be a set of items. Recall that the
extention of I, denoted ext(I), is the set of all transactions that contain I.
Given a set of transactions T , the intention of T , denoted int(T), is the
largest set of items that is contained in all transactions in T . Notice that
the extension is always defined relative to a transaction database. Based on
these definitions, the closure of an itemset I is defined as

cl(I) =def int(ext(I)) .

For example, in the database given in Figure 6.1, the extention of ab consists
of the transactions with identifiers 1, 2, and 5. The intention of these trans-
actions is the intersection of their sets of items: abc. Hence, cl(ab) = abc.

106 CHAPTER 6. CONCISE REPRESENTATIONS

The closure of an itemset I is the largest itemset that has the same set
of transactions as I. Therefore, freq(cl(I),D) = freq(I,D), and cl(I) is the
largest such set. An itemset I is closed if cl(I) = I. Notice that the notion
of “the largest set” is well-defined. Suppose for the sake of contradiction
that this largest set is not unique; that is, there are two sets J1, J2 ⊃ I with
freq(Ji) = freq(I), for i = 1, 2. This equality implies that every transaction
that contains I also contains Ji−I. Therefore, every transaction that contains
I also contains J1 ∪ J2, and thus freq(J1 ∪ J2) = freq(I), what contradicts
the assumed maximality of J1 and J2. We will denote the set of all closed
itemsets by Closed .

In Figure 6.1, the closed itemsets are indicated with rectangles. For
example, the set ab is closed since none of its supersets has a frequency of
4
5
. b is not closed, since ab has the same frequency. The closure of b is ab.

Typically, in realistic datasets, the number of closed itemsets is much smaller
than the total number of itemsets.

If we look at the definition of free sets as the minimal subsets sharing
the same frequency, and closed sets as the maximal such supersets, it is not
surprising that there is a strong connection between the two.

Lemma 18
Closed = {cl(I) | I ∈ Free}

Proof
Let I be a closed set. Let K be one of the minimal elements (with respect
to the inclusion ordering) in set

{J ⊆ I | freq(J) = freq(I)} .

It is straightforward that K is free and that cl(K) = I. 2

This connection is the reason why free sets are also called generators; they
generate the closed sets via the cl(.) -operator.

Lemma 19 The frequency of I can be derived from

(minimal{J ∈ Closed | I ⊆ J}) ./ Freq

as follows:

freq(I) = max{freq(J) | J ∈ minimal{J ∈ Closed | I ⊆ J}} .

(minimal(S) := {J ∈ S | 6 ∃J ′ ∈ S : J ′ ⊂ J})

6.2. OVERVIEW 107

Proof
Via similar reasoning as in the proof of Lemma 15. 2

The positive border of the frequent sets consists of all sets that are fre-
quent, but that do not have frequent supersets. In Figure 6.1, the positive
border is {ad, abc}. Clearly, the positive border characterizes FSET; a set is
frequent if it has a superset in the positive border. Furthermore, all elements
in the positive border must be closed: suppose that a frequent set I is not
closed, then cl(I) is a superset of I that is frequent, and thus I is not in
the positive border. This statement directly implies that the frequent closed
itemsets allow for deciding whether a set is frequent or not. Thus, unlike in
the free-set representation, we will not need to add the negative border. Let
now

ClosedRep =def (FSET ∩ Closed) ./ Freq .

In Figure 6.1, ClosedRep is denoted with shaded rectangles.

Theorem 21 ClosedRep is a representation.
Proof
We can decide whether or not a set is frequent using the positive border
of the frequent sets, and if a set is frequent, then we can derive its actual
frequency using Lemma 19. 2

In [72], it is also shown that Closed forms a lattice. This lattice is known
as the concept lattice [32]. In [80], the ChARM algorithm exploits this lattice
structure. Other algorithms, such as A-Close [72] and CLOSET [75] rely
mainly on Lemma 18 to find the closed sets.

6.2.3 Disjunction-Free Sets Representations

A disjunctive rule [12] is an expression X → (a∨b), with X an itemset, and a
and b items. The disjunctive rule X → (a∨ b) is said to hold in a transaction
database D if every transaction that contains X also contains either a or b.

Lemma 20 X → (a ∨ b) holds if and only if

freq(X ∪ {a, b}) = freq(X ∪ {a}) + freq(X ∪ {b})− freq(X) .

Furthermore, if a 6= b, then

freq(X ∪ {a, b}) ≥ freq(X ∪ {a}) + freq(X ∪ {b})− freq(X) .

108 CHAPTER 6. CONCISE REPRESENTATIONS

TID Items

1 a, b, c, d, e
2 a, b, d, e
3 a, b, d, e
4 b, c, d, e
5 b, c, d, e
6 a, b, e
7 a, c, d
8 a, c, e

9 b, c, d
10 b, c, e
11 c, d, e
12 b, c
13 b, d
14 c, d
15 d, e
16 b

t = 3/16

abcde

abcd abce abde acde bcde

abc abd abe acd ace ade bcd bce bde cde

ab ac ad ae bc bd be cd ce de

a b c d e

1

1

1

11

22

3

33

3

4 4 4 45

4 43 5 6 7 7 7 6 7

6 1011 1011

16

Gen. Disj. Free

Disj. Free

Free

Figure 6.2: Free, disjunction-free and generalized disjunction-free sets

6.2. OVERVIEW 109

Proof
The disjunctive rule X → (A∨B) holds if and only if FX∪{a,b}

X = 0. Indeed;

FX∪{a,b}
X = 0 if and only if there are no transactions that contain X and do

not contain a nor b. It is also true that

freq(X) = FX∪{a,b}
X + FX∪{a,b}

X∪{a} + FX∪{a,b}
X∪{b} + FX∪{a,b}

X∪{a,b} ,

freq(X ∪ {A}) = FX∪{a,b}
X∪{a} + FX∪{a,b}

X∪{a,b} ,

freq(X ∪ {B}) = FX∪{a,b}
X∪{b} + FX∪{a,b}

X∪{a,b} ,

freq(X ∪ {A,B}) = FX∪{a,b}
X∪{a,b} .

From these equalities, we easily derive the lemma. 2

Lemma 20 will be used in both directions. On one hand we will use it to
check whether a disjunctive rule X → (a ∨ b) holds, and on the other hand
we can use it to derive the frequency of the itemset X ∪ {a, b} in the case
that we know the rule holds. Notice also that we can use the second part of
the lemma to derive lower bounds on the frequency of itemsets.

A set I will be called disjunction-free if there do not exist items a, b ∈ I
such that (I − {a, b}) → (a ∨ b) holds in the transaction database 2. We
denote the set of all disjunction-free itemsets by DFree. Notice that a set
I is a free set if and only if there exists an item a ∈ I such that the rule
I → (a ∨ a) holds. Therefore, every disjunction-free set is also free. The
opposite direction does not hold, as can be seen in Figure 6.1; the set bd is
free, but not disjunction-free (rule φ→ (b ∨ d) holds).

In Figure 6.2, a database is given, together with the disjunction-free sets.
The disjunction-free sets are the ones below the second line. acde is not
disjunction-free since for example the rule ac → (d ∨ e) holds. Indeed, the
only transactions that contain ac are the ones with identifiers 1, 7, and 8. 1
contains both d and e, 7 contains d, and 8 contains e.

Lemma 21 Disjunction-freeness is anti-monotone, that is: if an itemset
I is disjunction-free, then all subsets are disjunction-free as well.

Proof
Let I ⊂ J . Suppose (I − {a, b}) → (a ∨ b) holds. Then also (J − {a, b}) →
(a ∨ b) holds, since every transaction that contains J − {a, b} also contains
I−{a, b}. We can thus conclude that if I is not disjunction free, then neither

2Notice that we do not require that a and b are different items.

110 CHAPTER 6. CONCISE REPRESENTATIONS

is J . 2

Notice that from the proof of Lemma 21, we can derive that if we know
a disjunctive rule for I that holds, we automatically know disjunctive rules
for all supersets of I. For example, consider the database in Figure 6.2.
Suppose that we know the following frequencies: freq(a) = 6

16
, freq(ac) = 3

16
,

freq(ae) = 5
16
, and freq(ace) = 2

16
. Using Lemma 20, we can derive that

the rule a → (c ∨ e) holds. Using a similar reasoning as in the proof of
Lemma 21, we can derive that hence also the rule ab → (c ∨ e) holds, and
thus that freq(abce) = freq(abc) + freq(abe) − freq(ab). The disjunction-free
sets representation is based on this observation.

The frequent disjunction-free sets, which we will denote by FreqDFree,
do not form a representation on their own. Let DFreeRep be the following
collection

DFreeRep =def (FreqDFree ∪ cover(FreqDFree)) ./ Freq .

In [12], the following theorem is proved.

Theorem 22 DFreeRep is a representation.

Proof
Because we have added the cover to the representation, for each set J that
is not in the representation, there exists a disjunction-free subset I in the
representation and a subset I∪{a} in the border. The set I∪{a} is either in-
frequent or not disjunction-free. If it is infrequent, then J must be infrequent
as well. If it is not disjunction-free, then neither is J . Using the reasoning
given above, we can derive which disjunctive rule holds for J , based on the
rule that holds for I ∪ {a}. Thus, based on the frequencies of the subsets of
J , we can derive the frequency of J . Now, the theorem can easily be proved
by induction on the size of J . 2

In Figure 6.2,

DFreeRep =

φ, a, b, c, d, e,
ab, ac, ad, ae, bc,
bd, be, cd, ce, de,
abd, acd, bcd, bce,
bde, cde, bcde

∪

{
abc, abe,
ace, ade

}

./ Freq

Suppose we want to know whether abcde is frequent. We first check whether
there are infrequent subsets of abcde in the cover. This is the case, for

6.2. OVERVIEW 111

example, ace. Hence, based on the representation we can conclude that
abcde is infrequent. If we want to know whether abde is frequent, we perform
the same check. None of the subsets of abde in the cover is infrequent.
Because for example ade is in the cover, and is frequent, we know that it
is not disjunction-free. We can test which disjunctive rule holds with the
frequencies in DFreeRep. In this way we find that

freq(ade) = freq(ad) + freq(ae)− freq(a) .

Therefore, the rule a → (d ∨ e) must hold. But then also rule ab → (d ∨ e)
holds, and thus

freq(abde) = freq(abd) + freq(abe)− freq(ab) =
3

16
.

As is observed in [56], it is not necessary to store all sets in the border.
Instead, it is argued that it suffices to only store the generators in the bor-
der of FreqDFree. Furthermore, for the infrequent sets we do not need to
store the actual frequency. In this way we get the following representation
DFreeGenRep, which we will call the disjunction-free generators representa-
tion:

DFreeGenRep =def

FreqDFree ./ Freq ,
cover(FreqDFree) ∩ Free ∩ FSET ./ Freq ,
cover(FreqDFree) ∩ Free ∩ Infrequent

Theorem 23 DFreeGenRep is a representation of the frequent sets.

Proof
If a set J is in DFreeRep, but not in DFreeGenRep, then, by definition, J is
not free. All subsets of J however are stored in DFreeGenRep, together with
their frequencies. We can now use Lemma 15 to derive the frequency of J .
2

In Figure 6.2, DFreeGenRep is

φ, a, b, c, d, e,
ab, ac, ad, ae, bc,
bd, be, cd, ce, de,
abd, acd, bcd, bce,
bde, cde, bcde

./ Freq ,
{
ade

}
./ Freq ,

{
abc, ace

}

Because abe is in the cover of the disjunction-free sets, but not in the rep-
resentation, we know that abe is not free. Therefore, the frequency of abe is
the minimum of the frequencies of its subsets, which is 4

16
.

112 CHAPTER 6. CONCISE REPRESENTATIONS

6.2.4 Generalized Disjunction-Free Representation

In [58, 57], generalized disjunction-free generators are introduced as a natural
extension of disjunction-free generators. The construction of the represen-
tation based on generalized disjunction-free itemsets is very similar to the
construction of the disjunction-free representations.

A generalized disjunctive rule is an expression X →
∨
Y , with X and

Y disjunctive itemsets. A rule X →
∨
Y is said to hold in a transaction

database if every transaction that contains X also contains at least one of
the items in Y . An itemset I is generalized disjunction-free if there does not
exist a subset X of I such that (I −X)→

∨
X holds. We denote the set of

all generalized disjunction-free sets by GDFree.

For example, in Figure 6.2, bcde is not generalized disjunction-free because
the rule c→ (b ∨ d ∨ e) holds.

Lemma 22 Generalized disjunction-freeness is anti-monotone; that is, if
a set is generalized disjunction-free, than its subsets are as well.

Proof
The proof of this lemma is very similar to the proof of Lemma 21. Suppose an
itemset I is generalized disjunction-free based on rule (I −X)→

∨
X, then

every superset J of I is generalized disjunction-free because rule (J −X)→∨
X must hold as well. 2

In Figure 6.2, bcde is not generalized disjunction-free because of rule
c → (b ∨ d ∨ e). Therefore, also abcde is not generalized disjunction-free,
with rule ac→ (b ∨ d ∨ e).

Notice that the situation here is similar as with the disjunction-free sets.
If we know the rule for a non generalized disjunction-free set, then we also
know rules for all supersets. We still need to show how, based on a generalized
disjunctive rule that holds, and the frequencies of subsets, we can derive the
frequency of a non-generalized disjunctive-free itemset.

Lemma 23 Let I be an itemset, X a subset of I. The rule (I−X)→
∨
X

holds if and only if

freq(I) =
∑

I−X⊆J⊂I

(−1)|I−J |+1freq(J) .

6.2. OVERVIEW 113

Proof
For a direct proof of this result, we refer the reader to [57]. This result also
follows from

σ(I −X, I) =
∑

I−X⊆J⊂I

(−1)|I−J |+1freq(J) ,

and
|freq(I)− σ(I −X, I)| = F I

I−X .

Furthermore, (I −X)→
∨
X holds if there are no transactions that contain

I −X, but none of X, hence whenever F I
X = 0. 2

This lemma allows us to check, based on the frequencies of an itemset
I and its subsets, whether there is a rule based on I that holds. If there is
such a rule, then we know by Lemma 22 that, for all supersets of I, there are
rules that hold. Using Lemma 23 in the only if direction, we can then derive
the frequencies of these supersets, based on the frequency of the subsets. For
example, in Figure 6.2, we find that the rule c→ (b ∨ d ∨ e) holds because

freq(bcde) = freq(bcd) + freq(bce) + freq(cde)
−freq(bc)− freq(cd)− freq(ce) + freq(c)

= 3
16

.

Because rule c→ (b∨d∨e) holds, also rule ac→ (b∨d∨e) holds, and hence,

freq(abcde) = freq(abcd) + freq(abce) + freq(acde)
−freq(abc)− freq(acd)− freq(ace) + freq(ac)

= 1
16

.

In a representation, we will not store the supersets of a non-generalized
disjunction-free set. The sets in the border of the frequent generalized
disjunction-free sets we will have to store however; for those sets, we have
no indication of which rule holds. We will denote the frequent generalized
disjunction-free sets by FreqGenDFree. Let now GDFreeRep be

(FreqGenDFree ∪ cover(FreqGenDFree)) ./ Freq .

The next theorem is now immediate.

Theorem 24 GDFreeRep is a representation.

We can again apply the same technique as with the disjunction-free repre-
sentation. Instead of storing the whole cover, we only store the free sets in
the cover, and we only store the frequencies of the frequent sets.

114 CHAPTER 6. CONCISE REPRESENTATIONS

Let GDFreeGenRep be the following collection:

FreqGenDFree ./ Freq ,
cover(FreqGenDFree) ∩ Free ∩ FSET ./ Freq ,
cover(FreqGenDFree) ∩ Free ∩ Infrequent

Theorem 25 GDFreeGenRep is a representation of the frequent sets.

Proof
The proof is similar to the proof of Theorem 23. 2

In Figure 6.2, GDFreeGenRep is the following collection:

φ, a, b, c, d, e,
ab, ac, ad, ae, bc,
bd, be, cd, ce, de,
acd, bcd, bce, bde,
cde

./ Freq ,
{
ade, bcde

}
./ Freq ,

{
abc, ace

}

6.2.5 Non-Derivable Itemsets Representation

The non-derivable itemsets were already introduced in Chapter 4. Here we
only repeat the most important properties.

Properties Let

σ(J, I) =
∑

J⊆I′⊂I

(−1)|I−I
′|+1freq(I ′,D)

RI(J) ≡

{
freq(I) ≤ σ(J, I) |I − J | odd
freq(I) ≥ σ(J, I) |I − J | even

A set I is called a derivable itemset in a database D if and only if

{freq(I) = freq(I,D) | I ⊂ J} |=tight freq(I) = freq(I,D) .

- Let C = {freq(I) = freq(I,D) | I ⊂ J}.

C |=tight freq(I) ∈ [max {σ(J, I) | |I − J | even} ,
min {σ(J, I) | |I − J | odd}]

- The error on RI(J) is F
I
J ; that is,

|σ(J, I)− freq(I,D)| = F I
J .

6.3. EXTENDING THE NDI-REPRESENTATION 115

- Derivability is monotone, that is, if I ⊆ J , and I is a derivable itemset,
then also is J .

- If σ(J, I) = freq(I,D), then also

σ(J, I ∪ {i}) = σ(J ∪ {i}, I ∪ {i}) = freq(I ∪ {i}) .

Let J be an itemset. We denote the bounds which we can calculate on
the frequency of I with the deduction rules RI(J), by LB(I) and UB(I).
That is,

LB(I) =def max {σ(J, I) | |I − J | even} , and
UB(I) =def min {σ(J, I) | |I − J | odd} .

Notice that in a concise representation, we do not need to store the supports
of the derivable itemsets, since their support can be derived from the supports
of its subsets.

The NDI-based representation defined in Chapter 4 is:

NDIRep =def (NDI ∩ FSET) ./ Freq .

We already showed in Theorem 18 that NDIRep is a representation.

Notice that, unlike the other representations, NDIRep is based on logical
implication. That is, for every frequent set that is not in the representa-
tion, the frequency is uniquely determined by the frequencies of the sets in
NDIRep. We do not need any additional conventions; the fact that an item-
set I in the representation has frequency freq(I,D) is logically implied by
NDIRep. For the other representations this is not the case. In the other
representations we rely heavily on a couple of assumptions. For example,
the free sets representation relies on the fact that if a set is frequent and not
in the representation, then its frequency equals the frequency of one of its
subsets. With this assumption, the frequency is uniquely determined, but
the frequencies of the itemsets in the representation alone do not necessarily
logically imply the frequency of this set. In the next section we show how we
can improve the NDI-based representation by adding similar assumptions.

6.3 Extending the NDI-Representation

In this section we will extend the NDI-representations in two ways. First, we
restrict the depth of the rules. Second, we add assumptions to the NDI-based
representations.

116 CHAPTER 6. CONCISE REPRESENTATIONS

6.3.1 Rules of Limited Depth

Recall form the last section that the rule RI(J) with J ⊆ I calculates a lower
bound on the support of I if and only if |I − J | is even. In the case |I − J |
is odd, RI(J) calculates an upper bound. Notice also that the complexity of
the rules becomes higher as |I − J | increases. We will call rules RI(J) with
|I − J | = k, rules of depth k. For example, the monotonicity of frequency is
stated by the rules of depth 1. Because of the high complexity of the rules
of high depth, we will often evaluate only the rules of limited depth. By
restricting ourselves to only these rules, the resulting bounds are no longer
tight, but they are more efficiently computable. We will denote the lower
and upper bound that we can compute on the frequency of I with rules up
to depth k by respectively LB k(I) and UBk(I). That is,

LBk(I) =def max{σ(J, I) | J ⊆ I, |I − J | ≤ k, even} ,
UBk(I) =def min{σ(J, I) | J ⊆ I, |I − J | ≤ k, odd} .

If k = |I|, that is, we are evaluating all rules, we will omit the subscript k.
Clearly,

LB0(I) = LB 1(I) ≤ LB 2(I) = LB 3(I) ≤ . . . ≤ LB(I) ≤ freq(I,D) ,
freq(I,D) ≤ UB(I) ≤ UB |I|(I) ≤ . . . ≤ UB 2(I) = UB 1(I) ,

and,

[LB ,UB] ⊆ [LB |I|−1,UB |I|−1] ⊆ . . . ⊆ [LB 1,UB1] ⊆ [LB 0,UB0] .

Since there are no rules for upper bounds of depth 0, we let UB 0(I) =∞.

Example 16 Consider the database that has been given in Figure 6.2. For
bcd, we can calculate the following bounds:

(0) freq(bcd) ≥ σ(bcd, bcd) = 0

(1) ≤ σ(bc, bcd) = fbc =
6
16

≤ σ(bd, bcd) = fbd =
7
16

≤ σ(cd, bcd) = fcd =
7
16

(2) ≥ σ(b, bcd) = fbc + fbd − fb =
2
16

≥ σ(c, bcd) = fbc + fcd − fc =
3
16

≥ σ(d, bcd) = fbd + fcd − fd =
3
16

(3) ≤ σ(φ, bcd) = fbc + fbd + fcd − fb − fc − fd + fφ = 4
16

6.3. EXTENDING THE NDI-REPRESENTATION 117

Hence, LB0(bcd) = 0, LB 2(bcd) =
2
16
, UB1(bcd) =

6
16
, UB3(bcd) =

4
16
. Thus,

for depth going from 0 to 3, we get respectively the following intervals:

[0,∞] ⊇

[
0,

6

16

]
⊇

[
2

16
,
6

16

]
⊇

[
2

16
,
4

16

]
.

2

From the theory developed for non-derivable itemsets, we easily derive
the following properties of the LB k and UBk notations.

Theorem 26 Let fI = freq(I,D), for all I ⊆ I.

- {freq(I) = fI | I ⊂ J} |=tight freq(I) ∈ [LB(I),UB(I)] ,

- min{|LBk(I)−freq(I)|, |UB k(I)−freq(I)|} = min{F I
J | |I−J | ≤ k} ,

- Let I ⊂ J . If freq(I) = LB 2k(I), then also freq(J) = LB 2k(J), and
freq(J) = UB 2k+1(J).
If freq(I) = UB 2k−1(I), then also freq(J) = UB 2k−1(J), and freq(J) =
LB2k(J).

Proof
These properties are the respective counterparts of Theorem 17, the fact that
|σ(J, I)− freq(I)| = F I

J , and Corollary 5. 2

6.3.2 NDI-representations of Limited Depth

We first extend the notion of NDI-based representation to also include rep-
resentations that are only based on rules up to depth k.

NDI k =def {I | LBk(I) 6= UBk(I)} ,
NDIRepk =def (NDI k ∩ FSET) ./ Freq .

Based on Theorem 26 (the third part), we obtain the following theorem.

Theorem 27 NDIRepk is a concise representation of the frequent itemsets.

It is clear that there is a hierarchy between these different representations:

Lemma 24
NDIRep1 w NDIRep2 w . . . w NDIRep .

118 CHAPTER 6. CONCISE REPRESENTATIONS

6.3.3 Adding Assumptions to NDI-Representations

As we mentioned earlier, most representations rely not only on logical impli-
cation, but also on some additional assumptions. We will now show how we
can incorporate additional assumptions to make the NDI-based representa-
tions more concise.

Frequency Equals Lower Bound Suppose that we have a frequent
itemset for which freq(I) = LB k(I), but not freq(I) = UB k(I). In that case
we can leave I out of the representation. If we want to restore the set of
frequent itemsets later on we will be able to recognize a set I that was left
out because of the equality freq(I) = LB k(I) as follows. When we calculate
the bounds on I, we see that I is frequent (the lower bound is above the
frequency threshold), and not in NDI k. Therefore, I must have been left
out of the representation because freq(I) = LB k(I). We define the resulting
representations as follows:

lbNDI k =def {I | LBk(I) 6= freq(I,D)} ,
lbNDIRepk =def (lbNDI k ∩ FSET) ./ Freq .

lbNDI and lbNDIRep are defined in a similar way, with LB and UB . Thus,
starting from lbNDIRepk, we restore FSET as follows: we work bottom-up,
that is, we start with the smallest sets. As such, for each set we need to
consider, we know for all subsets whether they are frequent of not, and if
they are frequent, then we know the exact frequency. We summarize the
handling of a set I:

(1) I has an infrequent subset: I is infrequent due to monotonicity.

(2) I does not have an infrequent subset.

(a) I is in lbNDIRepk: I is frequent, and we get the frequency directly
from lbNDIRepk.

(b) I is not in lbNDIRepk: Since I has no infrequent subsets, and we
are working bottom-up, we know the frequency of all subsets of I.
Hence we can calculate the bound LB k(I). t denotes the threshold
for the frequency.

(i) t ≤ LBk(I): I must be frequent, and hence freq(I) = LB k(I),
because otherwise the set I would have been in lbNDIRepk.

(ii) LBk(I) < t: Since I is not in lbNDIRepk, I is either infre-
quent, or freq(I) = LB k(I) < t, in which case I is infrequent
as well. Therefore we can conclude that I is infrequent.

6.3. EXTENDING THE NDI-REPRESENTATION 119

Theorem 28 lbNDIRepk is a concise representation of the frequent item-
sets, and for each k, lbNDIRepk v NDIRepk. For all k ≥ 0, lbNDIRepk+1 v
lbNDIRepk

Proof
It is clear that lbNDIRepk is a representation.

It is straightforward that NDIRepk v lbNDIRepk; whenever LBk(I) =
UBk(I), also freq(I) = LB k(I).

lbNDIRepk+1 v lbNDIRepk follows directly from lbNDI k+1 v lbNDI k. 2

Notice that it is not always true that NDIRep v lbNDIRepk. As a con-
crete example consider the following database:

TID Items

1 a
2 b
3 a, b

freq({}) = 1

freq(a) = 2
3

freq(b) = 2
3

freq(ab) = 1
3

In this database,

lbNDIRep2 =

{
(φ, 1) ,

(
a,

2

3

)
,

(
b,
2

3

)}
,

and

NDIRep =

{
(φ, 1) ,

(
a,

2

3

)
,

(
b,
2

3

)
,

(
ab,

1

3

)}
.

Frequency Equals Upper Bound One might now wonder whether we
can do something similar for upper bounds. The answer however is negative;
for the upper bounds the construction is far more involved. Let

ubNDI k =def {I | UBk(I) 6= freq(I)} .

If we only store (ubNDI k ∩ FSET) ./ Freq , we will be unable to distinguish
between a frequent itemset I with LB k(I) < t ≤ freq(I) = UB k(I), and an
infrequent itemset J with LB k(J) ≤ freq(J) < t ≤ UB k(J), where t is the
frequency threshold. Using a similar schema as for lbNDIRepk, for a set I,
we would get the following (flawed) decision procedure.

(1) I has an infrequent subset: I is infrequent due to monotonicity.

120 CHAPTER 6. CONCISE REPRESENTATIONS

(2) I does not have an infrequent subset

(a) I is in ubNDI k ∩ FSET: I is frequent, and we get the frequency
directly from (ubNDI k ∩ FSET) ./ Freq .

(b) I is not in ubNDI k∩FSET: Since I has no infrequent subsets, and
we are working bottom-up, we know the frequency of all subsets
of I. Hence we can calculate the bounds LB k(I) and UBk(I). t
denotes the threshold for the frequency.

(i) t ≤ LBk(I): I is certainly frequent. Therefore, freq(I) =
UBk(I), because otherwise I would be in ubNDI k ∩ FSET.

(ii) UBk(I) < t: I must be infrequent.

(iii) LBk(I) < t ≤ UBk(I): Here we have a problem. There can
be two reasons for I not being in ubNDI k ∩ FSET. Either I
is infrequent, or freq(I) = UB k(I) and hence I is frequent.
Based on LBk(I) < t ≤ UBk(I), these two possibilities are
indistinguishable. There is however one more thing we can
do:

(α) There is a subset J of I such that UB k(J) = freq(J).
Therefore, I is frequent because also freq(I) = UB k(I) ≥
t.

(β) No subset J of I has UB k(J) = freq(J). Thus, every
subset of I is in ubNDI k ∩ FSET, and I itself is not.
The sets for which we cannot solve the problem are thus
exactly the ones in cover(ubNDI k ∩ FSET).

Notice that we only have problems with sets in the cover of ubNDI k ∩
FSET (case 2.b.iii.β). To resolve this issue we will add part of the cover
of ubNDI k ∩ FSET to the representation. It is clear that we do not need
to add itemsets I for which t ≤ LB k(I) or UBk(I) < t, since these are
handled in respectively case 2.b.i and 2.b.ii. We can now choose to either
store the infrequent sets J in the cover that have UB k(J) ≥ t, or to store
the frequent sets I with LB k(I) ≤ t. These two options give the following
two representations.

ubNDIRepk =def
(ubNDI k ∩ FSET) ./ Freq ,

cover(ubNDI k ∩ FSET)
∩Infrequent
∩{I | UBk(I) ≥ t}

6.3. EXTENDING THE NDI-REPRESENTATION 121

ubNDIRep ′k =def
(ubNDI k ∩ FSET) ./ Freq ,

cover(ubNDI k ∩ FSET)
∩FSET
∩{I | LBk(I) < t}

For ubNDIRepk, case 2.b.iii.β becomes:

2.b.iii.β Let C denote cover(ubNDI k ∩FSET)∩ Infrequent ∩ {I | UB k(I) ≥ t}.

β1 I is in C: I is infrequent.

β2 I is not in C: I is frequent, and thus freq(I) = UB k(I), because
otherwise I would have been in ubNDI k ∩ FSET.

For ubNDIRep ′k, we get:

2.b.iii.β ′ Let C denote cover(ubNDI k ∩ FSET) ∩ FSET ∩ {I | LB k(I) < t}.

β′1 I is in C: I is frequent, and thus freq(I) = UB k(I), because
otherwise I would have been in ubNDI k ∩ FSET.

β′2 I is not in C: I is infrequent.

Theorem 29 ubNDIRepk and ubNDIRep ′k are both concise representations
of the frequent sets. Furthermore, ubNDIRep ′k v NDIRepk. For all k ≥ 1 it
holds that ubNDIRepk+1 v ubNDIRepk and ubNDIRep ′k+1 v ubNDIRep ′k.

Proof
Given the discussion above, it is immediate that ubNDIRepk and ubNDIRep ′k
are both representations.

For ubNDIRep ′k v NDIRepk, suppose that an itemset I is not in NDIRepk.
Then, either I is infrequent, or LB k(I) = UBk(I) ≥ t. In the first case, I is
not in ubNDIRep ′k, because ubNDIRep ′k only contains frequent sets. In the
second case, I is not in the first component of ubNDIRep ′k because ubNDI k ⊆
NDI k, and not in the second component because LB k(I) ≥ t. Therefore, if
I is not in NDIRepk, then neither it is in ubNDIRep ′k.

For the third part it suffices to notice that for all sets S ⊆ T , S ∪
cover(S) ⊆ T ∪ cover(T) 2

Thus, ubNDIRep ′k is always a subset of NDIRepk. Since ubNDIRepk can
contain infrequent sets, it is not true that ubNDIRepk is always a subset of
NDIRepk. For the other inclusions, that is, for NDIRep in ubNDIRepk and
NDIRep in ubNDIRep ′k, consider the following counterexamples.

122 CHAPTER 6. CONCISE REPRESENTATIONS

D1 =
TID Items

1 a
freq({}) = 1
freq(a) = 1

In this database, with t = 1,

ubNDIRep1 = {(φ, 1)} ,

and
NDIRep = ubNDIRep ′ = {(φ, 1) , (a, 1)} .

The second example is the following:

D2 =

TID Items

1 a, b, c
2 a, b, c
3 a, b, c
4 a
5 b
6 c
7

freq({}) = 1
freq(a) = freq(b) = freq(c) = 4

7

freq(ab) = freq(ac) = freq(bc) = 3
7

freq(abc) = 3
7

In D2, LB2(abc) =
2
7
, and UB2(abc) =

3
7
. Thus, with t = 1

7
,

ubNDIRep ′2 =({
(φ, 1) ,

(
a,

4

7

)
,

(
b,
4

7

)
,

(
c,
4

7

)
,

(
ab,

2

7

)
,

(
ac,

2

7

)
,

(
bc,

2

7

)}
, {}

)

and

NDIRep ={
(φ, 1) ,

(
a,

4

7

)
,

(
b,
4

7

)
,

(
c,
4

7

)
,

(
ab,

2

7

)
,

(
ac,

2

7

)
,

(
bc,

2

7

)
,

(
abc,

3

7

)}

Figure 6.3 gives the relations between the different representations intro-
duced in this section. Notice that because lbNDIRepk only uses lower bounds,
lbNDIRep2l = lbNDIRep2l+1 for all l ≥ 0. A similar remark applies for
ubNDIRepk; since it only uses upper bounds, ubNDIRep2l−1 = ubNDIRep2l

for all l ≥ 1.

6.3. EXTENDING THE NDI-REPRESENTATION 123

lbNDIRep ubNDIRep ′ ubNDIRep

NDIRep

lbNDIRep4 = lbNDIRep5 ubNDIRep ′5

NDIRep5

ubNDIRep ′4 ubNDIRep3

= ubNDIRep4

NDIRep4

lbNDIRep2 = lbNDIRep3 ubNDIRep ′3

NDIRep3

ubNDIRep ′2 ubNDIRep1

= ubNDIRep2

NDIRep2

lbNDIRep0 = lbNDIRep1 ubNDIRep ′1

NDIRep1 more concise

FSET ./ Freq less concise

Figure 6.3: Relation between different representations. The lines denote,
from top to bottom, the relation “more concise”.

124 CHAPTER 6. CONCISE REPRESENTATIONS

6.4 Unifying Framework

In this section we will show how the different representations (except the
closed sets representation) can be seen as the manifestation of the same
strategy. This strategy is as follows: a set I is stored with its frequency
in a representation if its frequency equal LB k(I) nor UBk(I), for a fixed k.
This information is not enough, so some of the sets in the cover need to be
stored as well. Depending on the type of the representation, the frequent, the
infrequent, the sets with freq(I) = UB k(I), or the sets with freq(I) = UB k(I)
are stored. A key tool will be the notion of a k-free set as direct extension
of free sets, and the analysis of the covers of these k-free sets.

6.4.1 k-Free Sets

We next define k-freeness of itemsets. We stress that this definition is relative
to a transaction database, since it involves the bounds LB k(I) and UBk(I).

Definition 18

- A set I is said to be k-free, if freq(I) 6= LB k(I) and freq(I) 6= UB k(I).

- A set I is said to be ∞-free, if freq(I) 6= LB(I), and freq(I) 6= UB(I).

- The set of all k-free (∞-free) sets is denoted by Freek (Free∞). 2

As the next lemma states, these definitions cover freeness, disjunction-
freeness, and generalized disjunction-freeness.

Lemma 25 Let I be an itemset.

- I is free if and only if I is 1-free

- I is disjunction free if and only if I is 2-free.

- I is generalized disjunction-free if and only if I is ∞-free.

Proof

- The rules of depth 1 are exactly the rules freq(I) ≤ freq(I − {a},D).
Therefore, I is 1-free if and only if the frequency of I does not equal
the frequency of one of its subsets, and hence I is free.

6.4. UNIFYING FRAMEWORK 125

- The rules of depth 2 are the rules freq(I) ≤ freq(I − a) + freq(I −
b)− freq(I − ab). According to Lemma 20, freq(I − a) + freq(I − b)−
freq(I−ab) = freq(I) if and only if the I−ab→ (a∨ b) holds. If a = b,
freq(I − a) + freq(I − b) − freq(I − ab) reduces to freq(I − a). Hence,
there is a rule I − a → a that holds if and only if freq(I) = UB 1(I),
and there is a rule I − ab → (a ∨ b), a 6= b that holds if and only if
freq(I) = LB 2(I). Therefore, I is disjunction-free if and only if it is
2-free.

- The third statement can be proven in a similar way as the previous
one, using Lemma 23. 2

Let now FreqFreek be the set Freek ∩ FSET. As we argued before for
the sets FreqFree and FreqDFree, FreqFreek ./ Freq is not a representation.
Indeed, if a set I is not in the representation, there is no way to know
whether I was left out the representation because I is infrequent, or because
freq(I) = LBk(I), or because freq(I) = UB k(I). To resolve this problem,
parts of the cover cover(FreqFreek) have to be stored. If we can restore the
cover exactly, the other sets can be determined as well. This can be seen
as follows: if a set I is not in cover(FreqFreek), and not in FreqFreek, then
it has a subset J in the cover. If this set J is infrequent, then so is I. If
freq(J) = LBk(J), then freq(I) = LB k(I), and, if freq(J) = UB k(J), then
freq(I) = UBk(I). Hence, if we can restore the complete cover, then we can
restore all information.

The sets in cover(FreqFreek) can be divided in different groups, depending
on whether they are frequent or not, have frequency equal to the lower bound
or not, and have frequency equal to the upper bound or not. In order to make
the discussion easier, we introduce a 3-letter notation to denote the different
groups in the cover. The first letter denotes whether the sets in the group
are frequent: f is frequent, i is infrequent. The second letter is l if the sets
I in the group have freq(I) = LB k(I), otherwise it is l. The third letter
is u for groups with freq(I) = UB k(I), and u otherwise. The rule depth k
is indicated as a subscript to the notation. For example, fluk denotes the
group

fluk =def cover(FreqFreek) ∩ FSET ∩ {I | freq(I) 6= LB k(I)}
∩ {I | freq(I) = UBk(I)} ,

and iluk denotes the group

iluk =def cover(FreqFreek) ∩ Infrequent ∩ {I | freq(I) = LB k(I)}
∩ {I | freq(I) 6= UBk(I)} .

126 CHAPTER 6. CONCISE REPRESENTATIONS

We split some of the groups even further, based on whether or not the
bounds allow to conclude that a set is certainly frequent or certainly infre-
quent. For example, in the group flu, we distinguish between sets I such
that the lower bound allows to derive that I is frequent, and the other sets.
That is, cflu (c of certain), is the set

cfluk =def cover(FreqFreek) ∩ FSET ∩ {I | freq(I) 6= LB k(I)}
∩ {I | freq(I) = UBk(I)}
∩ {I | LBk(I) ≥ t} .

The other sets are in uflu (u of uncertain). Thus, uflu is the set

ufluk =def cover(FreqFreek) ∩ FSET ∩ {I | freq(I) 6= LB k(I)}
∩ {I | freq(I) = UBk(I)}
∩ {I | LBk(I) < t} .

Some of the groups only contain certain or uncertain sets, such as flu. Since
flu only contains frequent sets I with freq(I) = LB k(I), automatically the
condition LBk(I) ≥ t is fulfilled. The different groups are depicted in Fig-
ure 6.4. Notice that there are no groups with code flu, because sets that are
frequent, and have a frequency that equals neither the lower, nor the upper
bound must be in FreqFreek, and hence cannot be in cover(FreqFreek). To
make notations more concise, we will sometimes leave out some of the letters.
For example, fl denotes the union flu∪ flu, and il denotes ilu∪ cilu∪uilu.

Instead of storing the complete cover in a representation, we can restrict
ourselves to some of the groups. It is, for example, not necessary to store
the sets in the groups flu and ilu, because the sets I in these groups have
freq(I) = LBk(I) = UBk(I), and thus, are derivable. Furthermore, it is
not necessary to store sets in ilu, cilu, and cilu, because these sets have
UBk(I) < t. Therefore, when we have to decide, based on the representation,
whether sets in these groups are frequent, we can directly decide, based on
UBk(I), that these sets must be infrequent.

We can reduce the number of groups even more. For some subsets G of
the remaining groups

{flu, cflu, uflu, uilu, uilu} ,

the structure
FreqFreek ./ Freq × Πg∈Ggk

will be a representation, and for some groups not. For example, the group
G = {flu, cflu} gives the representation

(FreqFreek ./ Freq , f luk, cf lu) .

6.4. UNIFYING FRAMEWORK 127

freq(I) = LBk(I) flu
= UBk(I)

Frequent freq(I) = LBk(I) flu

6= UBk(I)

LBk ≥ t cflu

freq(I) 6= LBk(I) flu

= UBk(I) LBk < t uflu

freq(I) = LBk(I) ilu
= UBk(I)

UBk < t cilu

freq(I) = LBk(I) ilu

6= UBk(I) UBk ≥ t uilu
Infrequent

freq(I) 6= LBk(I) ilu
= UBk(I)

UBk < t cilu

freq(I) 6= LBk(I) ilu

6= UBk(I) UBk ≥ t uilu

Figure 6.4: Types of itemsets in the cover

We denote the structure associated with G and rules up to depth k with
Sk(G). Notice that there is no need to store the frequencies of the sets in fluk;
for all sets I in fluk, freq(I) = LBk(I). Hence, we can derive the frequency.
Similar observations apply for the other groups. We will now identify the
minimal subsets G such that the associated structure is a representation.

The only minimal groups G such that the associated structures are rep-
resentations are:

G1 = {flu, uflu} ,

G2 = {cflu, uflu} ,

G3 = {flu, uilu, uilu} , and

G4 = {cflu, uilu, uilu} .

Hence, we get the following theorem:

128 CHAPTER 6. CONCISE REPRESENTATIONS

Theorem 30 Let

G ⊆ {flu, cflu, uflu, uilu, uilu} .

Sk(G) is a representation if and only if either G1 ⊆ G, or G2 ⊆ G, or G3 ⊆ G,
or G4 ⊆ G.

Proof
The proof of this theorem will be in two stages. First, we show that Sk(G1),
Sk(G2), Sk(G3), and Sk(G4) are representations. Second, we give counterex-
amples that show that for the following sets G, Sk(G) is not a representation:

{flu, cflu, uilu} , {flu, cflu, uilu} , and {uflu, uilu, uilu} .

Since every subset of

{flu, cflu, uflu, uilu, uilu}

is either a superset of G1, G2, G3, or G4 or is a subset of the three sets above,
these two parts suffice. Indeed, the superset of a representation is again a
representation, and the subset of a non-representation is not a representation
as well.

Sk(G1), Sk(G2), Sk(G3), and Sk(G4) are representations

We can always recognize sets that are in the groups flu, ilu, cilu, ilu, and
cilu. We will therefore call these groups the certain groups . Thus, for i =
1, . . . , 4, we need to show that we can distinguish between the groups in

{flu, cflu, uflu, uilu, uilu} − Gi .

G1 = {flu, uflu}: The sets that are left out are the ones in the groups cflu,
uilu, and uilu. Thus, if we have a set I that is in cover(FreqFreek), but not in
S(G1), and not in one of the certain groups, then we know that I must be in
one of cflu, uilu, and uilu. It is straightforward that such a set I is in cflu
if and only if LBk(I) ≥ t. Therefore, we can decide whether I is frequent or
not, and if I is frequent, then it is in cflu, and thus has freq(I) = UB k(I).
G2 = {cflu, uflu}: A set I in the cover of FreqFreek, but not in S(G2), and
not in the certain groups is in flu if and only if LB k(I) ≥ t, otherwise I is
in uilu or uilu, and hence infrequent.
G3 = {flu, uilu, uilu}: A set I in the cover of FreqFreek, but not in S(G3),
and not in the certain groups is in cflu if and only if LB k(I) ≥ t, otherwise
I is in uflu.
G4 = {cflu, uilu, uilu}: We can distinguish between sets in flu and uflu as

6.4. UNIFYING FRAMEWORK 129

follows: if LBk(I) < t, then I cannot be in flu, if LB k(I) ≥ t, then I cannot
be in uflu.

Counterexamples

Suppose that G is a subset of {flu, cflu, uflu, uilu, uilu} for which we want
to show that Sk(G) is not a representation. We can proof this by giving an
example database D and threshold t such there are two itemsets a1 . . . an
and b1 . . . bn with the following properties: (a) the substitutions ai → bi,
i = 1, . . . , n leave the structure Sk(G) unchanged, and (b) either a1 . . . an
is frequent and b1 . . . bn is infrequent or they are both frequent, but with
freq(a1 . . . an,D) 6= freq(b1 . . . bn,D). Such an example shows that the struc-
ture Sk(G) is not a representation, since it does not allow for distinguishing
between a1 . . . an and b1 . . . bn.

Sk({flu, cflu, uilu}) is not a representation

Consider the following database:

D1 =

TID Items

1 a,b,c
2 a,b,c
3 a,b,c
4 a,b,c
5 a,b,c
6 a,c
7 b
8

freq({}) = 1 freq(ab) = 5
8

freq(a) = 3
4

freq(ac) = 3
4

freq(b) = 3
4

freq(bc) = 5
8

freq(c) = 3
4

freq(abc) = 5
8

The lower and upper bounds of depth 2 on the frequency of ab, ac, and bc
give the interval

[
1
2
, 3

4

]
. Let now t = 3

4
. Hence we have:

FreqFree2 = {{}, a, b, c} , cover(FreqFree2) = {ab, ac, bc} .

This gives the following groups in the cover:

uilu = {ab, bc} , uflu = {ac} .

Because neither ab, nor ac is stored in S2({flu, cflu, uilu}), we cannot dis-
tinguish between the frequent set ac and the infrequent set ab.

Sk({flu, cflu, uilu}) is not a representation

Consider the following database:

D2 =

TID Items

1 a,b,c
2 a,b,c
3 a,c
4 b

freq({}) = 1 freq(ab) = 1
2

freq(a) = 3
4

freq(ac) = 3
4

freq(b) = 3
4

freq(bc) = 1
2

freq(c) = 3
4

freq(abc) = 1
2

130 CHAPTER 6. CONCISE REPRESENTATIONS

The lower and upper bounds of depth 2 on the frequency of ab, ac, and bc
give the interval

[
1
2
, 3

4

]
. Let now t = 3

4
. Hence we have:

FreqFree2 = {{}, a, b, c} , cover(FreqFree2) = {ab, ac, bc} .

This gives the following groups in the cover:

uilu = {ab, bc} , uflu = {ac} .

Because neither ab, nor ac is stored in S2({flu, cflu, uilu}), we cannot dis-
tinguish between the frequent set ac and the infrequent set ab.

{uflu, uilu, uilu} is not a representation

Consider the following database:

D3 =

TID Items

1 a,b,c
2 a,b,c
3 a,c
4 b

freq({}) = 1 freq(ab) = 1
2

freq(a) = 3
4

freq(ac) = 3
4

freq(b) = 3
4

freq(bc) = 1
2

freq(c) = 3
4

freq(abc) = 1
2

D3 is invariant under permutations of a and c. The lower and upper bounds
of depth 2 on the frequency of ab, ac, and bc give the interval

[
1
2
, 3

4

]
. Let now

t = 1
2
. Hence we have:

FreqFree2 = {{}, a, b, c} , cover(FreqFree2) = {ab, ac, bc} .

This gives the following groups in the cover:

flu = {ab, bc} , cf lu = {ac} .

Because neither ab, nor ac is stored in S2(uflu, uilu, uilu), we cannot distin-
guish between the two frequent sets ab and ac. Because these two sets have
different frequency this proves that S2(uflu, uilu, uilu) is not a representa-
tion. 2

Table 6.1 describes the different representations in terms of the groups.
For the generalized disjunction-free generators representation there is a slight
difficulty. The authors of [58, 57] did not realize that X →

∨
Y gives rise to a

lower bound if |Y | is odd, and an upper bound if |Y | is even. Therefore, when
pruning the cover, the lower bound is not used as a evaluation criterium. The
non-free sets however, are pruned from the representation. Therefore, in fact,
for the sets in the cover, only rules of depth 1 are evaluated. Thus,

fu∞,1 =def cover(FreqFree∞) ∩ FSET
∩ {I | UB 1(I) 6= freq(I)} .

6.4. UNIFYING FRAMEWORK 131

Representation Base With frequency Without frequency
FreeRep FreqFree1 u1

FreeRep ′ FreqFree1 flu1

DFreeRep FreqFree2 complete cover
DFreeGenRep FreqFree2 flu2 iu2

GDFreeRep FreqFree∞ complete cover
GDFreeGenRep FreqFree∞ fu∞,1 iu∞,1

NDIRep FreqFree∞ flu∞, f lu∞
lbNDIRep2k FreqFree2k flu2k

= lbNDIRep2k+1

ubNDIRep2k−1 FreqFree2k−1 flu2k−1 uiu2k−1

= ubNDIRep2k

ubNDIRep ′2k−1 FreqFree2k−1 flu2k−1 uflu2k−1

Table 6.1: Representations in function of the groups in the cover

For the first six representations, the correctness of the Table 6.1 can eas-
ily be seen using the definitions of these representations. For the last six
representations, this is more difficult, because the definitions of these last
representations are not based on FreqFreek and cover(FreqFreek). For exam-
ple, ubNDIRepk is based on ubNDI k ∩ FSET and cover(ubNDI k ∩ FSET).
The next lemma however, expresses the sets on which these representations
are based in function of FreqFreek and the different groups.

Lemma 26

- NDI ∩ FSET = FreqFree∞ ∪ flu∞ ∪ flu∞

- lbNDI 2k ∩ FSET = FreqFree2k ∪ flu2k

- ubNDI 2k−1 ∩ FSET = FreqFree2k−1 ∪ flu2k−1

-

(
cover(ubNDI 2k−1 ∩ FSET)
∩ NDI 2k−1

)
=

(
cover(FreqFree2k−1)
−flu2k−1 − flu2k−1 − ilu2k−1

)

-

cover(ubNDI 2k−1 ∩ FSET)
∩ Infrequent
∩ {I | UB 2k−1(I) ≥ t}

 = uiu2k−1

-

cover(ubNDI 2k−1 ∩ FSET)
∩ FSET
∩ {I | LB 2k−1(I) < t}

 = uflu2k−1

132 CHAPTER 6. CONCISE REPRESENTATIONS

Proof
Let I not be in FreqFree∞ ∪ flu∞ ∪ flu∞. Then either I is infrequent, or I
is a derivable itemset, since every superset of sets in flu∞ and flu∞ must
be derivable. Hence, I is in FreqFree∞ ∪ flu∞ ∪ flu∞ if and only if I is
non-derivable and frequent.

The inclusion FreqFree2k∪flu2k ⊆ lbNDI 2k∩FSET is straightforward. For
the other inclusion, let I be a set in lbNDI 2k ∩FSET−FreqFree2k. Since I is
in lbNDI 2k∩FSET, I is frequent, and freq(I) 6= LB 2k(I). Because I is not in
FreqFree2k, either I is infrequent, or freq(I) = LB 2k(I), or freq(I) = UB 2k(I).
Hence, we can conclude that I is frequent, has freq(I) 6= LB 2k(I), and has
freq(I) = UB 2k(I). We show next that I has to be in cover(FreqFree2k). Let
J be a strict subset of I. J is frequent because of monotonicity. Furthermore,
on the one hand, freq(J) 6= LB 2k(J), because otherwise freq(I) = LB 2k(I).
On the other hand, suppose freq(J) = UB 2k(J). SinceUB 2k−1(J) = UB 2k(J)
(rules of even depth are lower bounds), this implies that UB 2k−1(J) =
freq(J), and hence LB 2k(I) = freq(I) (Theorem 26). This is a contra-
diction, and thus freq(J) 6= UB 2k(J). Because J is frequent, and has
freq(J) 6= LB 2k(J) and freq(J) 6= UB 2k(J), J ∈ FreqFree2k. Since J was
an arbitrary strict subset of I, I must be in cover(FreqFree2k). Hence, I is in
cover(FreqFree2k), I is frequent, freq(I) 6= LB 2k(I), and freq(I) = UB 2k(I).
Therefore, I is in flu.

The proof of the equality ubNDI 2k−1 ∩ FSET = FreqFree2k−1 ∪ flu2k−1

is similar.

We show that

cover(FreqFree2k−1 ∪ flu2k−1) ∩ NDI 2k−1 =
cover(FreqFree2k−1)− flu2k−1 − flu2k−1 − ilu2k−1 .

Let I be in cover(FreqFree2k−1 ∪ flu2k−1). Then, all subsets of I are in
FreqFree2k−1 ∪ flu2k−1. Suppose I has a strict subset J in flu2k−1. Then
freq(J) = LB 2k−1(J) = LB 2k−2(J), and thus freq(I) = LB 2k−1(I) and also
freq(I) = UB 2k−1(I). Hence this implies that I is derivable. Therefore, if
I is in cover(FreqFree2k−1 ∪ flu2k−1) ∩ NDI 2k−1, then all subsets of I are in
FreqFree2k−1, and thus, I is in

cover(FreqFree2k−1)− flu2k−1 − flu2k−1 − ilu2k−1 .

For the other inclusion, suppose I is in cover(FreqFree2k−1) − flu2k−1 −
flu2k−1−ilu2k−1. Since I is not in flu2k−1∪ilu2k−1, I is in NDI 2k−1. Because
I is in cover(FreqFree2k−1)− flu2k−1, I is in cover(FreqFree2k−1 ∪ flu2k−1).

The last two equalities follow directly from the third equality and the fact
that both Infrequent ∩{I | UB 2k−1(I) ≥ t} and FSET∩{I | LB 2k−1(I) < t}

6.4. UNIFYING FRAMEWORK 133

are subsets of NDI 2k−1. 2

Corollary 7 For each entry (R, B, {p1, . . . , pk}, {q1, . . . , ql}) in Table 6.1,
it holds that for every database D and frequency threshold t,

R ≡ (B ./ Freq , p1 ./ Freq , . . . , pk ./ Freq , q1, . . . , ql) .

Notice that in the summary table, NDIRepk and ubNDIRep ′2k are missing.
The reason for this is that for these representations, it is not true that they
consist of FreqFreek or FreqFree2k together with a part of the cover. The
reason for this is that supersets J of a set I with freq(I) = LB 2k(I), have
freq(J) = LB 2k(J), and freq(J) = UB 2k+1(J), but not necessarily UB 2k(J) =
freq(J). Consider for example the following database:

D =

TID Items

1 a
2 b
3 a,b
4 a,c
5 b,c
6 a,b,c
7 a,d
8 b,d
9 a,b,d
10 a,c,d
11 b,c,d
12 a,b,c,d

freq({}) = 1 freq(bc) = 1
3

freq(a) = 2
3

freq(bd) = 1
3

freq(b) = 2
3

freq(cd) = 1
4

freq(c) = 1
2

freq(abc) = 1
6

freq(d) = 1
2

freq(abd) = 1
6

freq(ab) = 1
3

freq(acd) = 1
6

freq(ac) = 1
3

freq(bcd) = 1
6

freq(ad) = 1
3

freq(abcd) = 1
12

The lower and upper bounds up to depth 2 in D are:

freq({}) ∈ [0,∞] freq(bc) ∈
[

1
6
, 1

2

]

freq(a) ∈ [0, 1] freq(bd) ∈
[

1
6
, 1

2

]

freq(b) ∈ [0, 1] freq(cd) ∈
[
0, 1

2

]

freq(c) ∈ [0, 1] freq(abc) ∈
[

1
6
, 1

3

]

freq(d) ∈ [0, 1] freq(abd) ∈
[

1
6
, 1

3

]

freq(ab) ∈
[

1
3
, 2

3

]
freq(acd) ∈

[
1
6
, 1

4

]

freq(ac) ∈
[

1
6
, 1

2

]
freq(bcd) ∈

[
1
6
, 1

4

]

freq(ad) ∈
[

1
6
, 1

2

]
freq(abcd) ∈

[
1
12
, 1

6

]

134 CHAPTER 6. CONCISE REPRESENTATIONS

Hence, all sets are in ubNDI 2 and in NDI 2. However,

FreqFree2 = {{}, a, b, c, d, ac, ad, bc, bd, cd, acd, abd} .

The sets ab, abc, abd, and abcd are not 2-free. The cover of FreqFree2 is {ab}.
This example shows that ubNDI 2 and NDI 2 are not necessarily subsets of
FreqFree2 ∪ cover(FreqFree2).

6.4.2 Closures of Representations

Another approach to improve representations that is orthogonal to the ap-
proach describe above is based on closures. It is based on the observation
that for a set of itemsets S, cl(S) ./ Freq is always smaller than and con-
tains the same information as S ./ Freq . Hence, given a representation
Sk({g1, . . . , gn}), we construct the representation cl(Sk({g1, . . . , gn})) as fol-
lows:

cl(Sk({g1, . . . , gn})) =def

(cl(FreqFreek) ./ Freq , g1 − cl(FreqFreek), . . . , gn − cl(FreqFreek)) .

We can easily reconstruct the original representation Sk({g1, . . . , gn}) based
on cl(Sk({g1, . . . , gn})).

For a representation R, let sets(R) denote the set of itemsets I such that
either (I, freq(I)) or I is in one of the components of R, and let fsets(R)
denote the set of itemsets I such that (I, freq(I)) is in one of the components
of R. From the definition of the closure of a representation, we can easily
derive the next theorem.

Theorem 31 Let Sk({g1, . . . , gn}) be a representation.

|sets(Sk({g1, . . . , gn}))| ≥ |sets(cl(Sk({g1, . . . , gn})))| ,

and

|fsets(Sk({g1, . . . , gn}))| ≥ |fsets(cl(Sk({g1, . . . , gn})))| .

6.4. UNIFYING FRAMEWORK 135

Example 17 Let D be the following database:

D =

TID Items

1 a,b,c,d
2 a,b,c
3 a
4 b,c,d
5 b,c,d
6 b
7 c,d
8 d
9

freq({}) = 1 freq(bc) = 4
9

freq(a) = 1
3

freq(bd) = 1
3

freq(b) = 5
9

freq(cd) = 4
9

freq(c) = 5
9

freq(abc) = 2
9

freq(d) = 5
9

freq(abd) = 1
9

freq(ab) = 2
9

freq(acd) = 1
9

freq(ac) = 2
9

freq(bcd) = 1
3

freq(ad) = 1
9

freq(abcd) = 1
9

The lower and upper bounds up to depth 2 in D are:

freq({}) ∈ [0,∞] freq(bc) ∈
[

1
9
, 5

9

]

freq(a) ∈ [0, 1] freq(bd) ∈
[

1
9
, 5

9

]

freq(b) ∈ [0, 1] freq(cd) ∈
[

1
9
, 5

9

]

freq(c) ∈ [0, 1] freq(abc) ∈
[

1
9
, 2

9

]

freq(d) ∈ [0, 1] freq(abd) ∈
[
0, 1

9

]

freq(ab) ∈
[
0, 1

3

]
freq(acd) ∈

[
1
9
, 1

9

]

freq(ac) ∈
[
0, 1

3

]
freq(bcd) ∈

[
1
3
, 1

3

]

freq(ad) ∈
[
0, 1

3

]
freq(abcd) ∈

[
1
9
, 1

9

]

Let t = 2
9
. The representation S2(cflu, uflu) is
({
{}, a, b, c, d, ab, ac, ad, bc, bd, cd

}
./ Freq , {}, {abc}

)
.

The closure of this representation, cl(S2(cflu, uflu)) is
({
{}, a, b, c, d, ad, bd, cd, abc, bcd

}
./ Freq , {}, {}

)
.

2

6.4.3 Relations Between the Representations

From Table 6.1, we can derive relations between the different representations.
In Figure 6.5, these relations are depicted.

136 CHAPTER 6. CONCISE REPRESENTATIONS

S(G3)

ubNDIRep

ubNDIRep3 GDFreeGenRep

DFreeGenRep GDFreeRep

S(G1) S(G2)
DFreeRep ClosedRep

= cl(FreeRep ′)

ubNDIRep1 cl(FreeRep) ubNDIRep ′ lbNDIRep

FreeRep FreeRep ′ NDIRep
more concise = ubNDIRep ′1

less concise FSET ./ Freq

Figure 6.5: Relations between the different representations. Solid lines de-
note the relation “more concise”, dashed lines denote the relation “smaller
than”. The more to the top, the more concise the representations become.

Most of the inclusions in Figure 6.5 are straightforward if we look at
Table 6.1. For FreeRep ′ = ubNDIRep ′1 and ubNDIRep1 v FreeRep, we point
out that cflu1 and flu1 are both empty, since the only lower bound of depth
1 is the trivial bound 0 (We assume implicitly that t 6= 0.) For the equality
ClosedRep = cl(FreeRep ′) we use Lemma 18 to proof that ClosedRep is in
cl(FreeRep) and cl(FreeRep ′). The inclusion of cl(FreeRep ′) in ClosedRep
follows from the fact that FreeRep ′ only contains frequent sets.

7
Related Work

In this chapter we discuss related work in probabilistic logics, approximate
inclusion-exclusion, statistical data protection, data mining algorithm opti-
mization, and concise representations.

7.1 Probabilistic Logics

In artificial intelligence literature, probabilistic logic [41] and reasoning about
uncertainty and belief [71] is studied intensively. The link with this thesis
is that the frequency of an itemset I can be seen as the probability that a
randomly chosen transaction from the transaction database satisfies I; i.e., we
can consider the transaction database as an underlying probability structure.
Let

C = {freq(I1) ∈ [l1, u1], . . . , freq(In) ∈ [ln, un]}

be a FREQSAT-problem. Every item a in one of the sets Ii’s can be asso-
ciated with a proposition Pa, and an itemset I with the conjunction of the
propositions associated with the items it contains. Hence,

I ≡
∧

a∈I

Pa .

A transaction T can then be considered as a truth assignment; in the assign-
ment represented by T , proposition Pa is true if and only if transaction T
contains item a. In this view, a transaction database D becomes a proba-
bility distribution. The probability of a certain truth assignment equals the
fraction of transactions in the database representing this truth assignment.
The probability that in the actual world I is true, is in this respect equal to
the frequency of I.

Nilsson introduced in [68] the following probabilistic logic problem: given
a finite set ofm logical sentences S1, . . . , Sm defined on a setX = {x1, . . . , xn}

137

138 CHAPTER 7. RELATED WORK

of n boolean variables with the usual boolean operators ∧,∨, and ¬, together
with probabilities p1, . . . , pm, does there exists a probability distribution on
the possible truth assignments of X, such that the probability of Si being
true, is exactly pi for all 1 ≤ i ≤ m. Georgakopoulos et al. proved [34]
that this problem, they suggest the name probabilistic satisfiability problem
(PSAT), is NP-complete. Notice that this result implies that FREQSAT for
sets of frequency constraints of the form

C = {freq(I1) = f1, . . . , freq(In) = fn}

is in NP. This proof can easily be extended to include intervals. It is this
extended proof that is in 2. For the NP-completeness there is not directly
a straightforward reduction. In the logic introduced by Nilsson, arbitrary
propositional logic sentences are allowed. The frequency constraints however,
can only model conjunctions; that is, no negations nor disjunctions. However,
as shown in Chapter 2, the proof in [34] can easily be extended to our case.

Another interesting problem, also stated by Nilsson in [68], is that of
probabilistic entailment . Again a set of logical sentences S1, . . . , Sm, together
with probabilities p1, . . . , pm is given, and one extra logical sentence Sm+1,
the target. It is asked to find best possible upper and lower bounds on
the probability that Sm+1 is true, given S1, . . . , Sm are satisfied with respec-
tive probabilities p1, . . . , pm. The interval defined by these lower and upper
bounds forms the so-called tight entailment of Sm+1.

For a comprehensive overview of probabilistic logic, probabilistic entail-
ment and various extensions, we refer to [46, 45]. Nilsson’s probabilistic
logic and entailment are extended in various ways, including assigning inter-
vals to logical expressions instead of exact probability values and also con-
sidering conditional probabilities [30, 60, 61]. In [61], Lukasiewicz studies
the complexity of (tight) entailment of conditional probabilities in a sys-
tematic and structured way. This study of Lukasiewicz was a motivation
to study the complexity of FREQENT and T-FREQENT. Because the fre-
quency constraints cannot express conditional constraints, the results we
obtain in Chapter 2 are stronger than the completeness results in [61].

In [26], Fagin et al. study the following extension. A basic weight formula
is an expression a1w(φ1) + . . . + akw(φk) ≥ c, where a1, . . . , ak and c are
integers and φ1, . . . , φk are propositional formulas, meaning that the sum of
all ai times the weight of φi is greater than or equal to c. A weight formula is a
boolean combination of basic weight formulas. The semantics are introduced
by an underlying probability space. The weight of a formula corresponds to
the probability that it is true. The main contribution of [26] is the description
of a sound and complete axiomatization for this probabilistic logic. All types

7.2. COMBINATORICS 139

of frequency constraints can be expressed in this probabilistic logic. The
frequent set expression freq(K) ≥ pK can be translated as w(

∧
i∈K Pi) ≥ pK .

Since Fagin et al. showed that deciding satisfiability for this logic is NP-
complete, it follows that FREQSAT is in NP. In Chapter 2 however, we
have chosen explicitly for adapting the proofs in [34], since they are more
instructive, and we needed the representation of the FREQSAT-problem as
a linear programming instance in the rest of the thesis.

Also in [30], axioms for a probabilistic logic are introduced. However, the
authors are unable to prove completeness of the axioms. For a restricted sub-
language (Type-A problems), they prove that their set of axioms is complete.
However, this sub-language is not sufficiently powerful to express frequency
constraints. In [30], the usefulness of an axiomatization is motivated by the
fact that it provides human-readable proofs. Also, when inference is stopped
before termination, still a partial inference of the frequencies is provided.

A great number of inference rules have been proposed in artificial intel-
ligence studies. As pointed out in [49], rule based deduction has its biggest
advantage over global optimization (e.g. linear programming) when work-
ing in a restricted setting with specialized knowledge bases. When studying
deduction rules, in most artificial intelligence work, locally complete rules
are studied; when global completeness is required, linear programming tech-
niques are more appropriate. For example, in [60], Lukasiewicz gives a locally
complete rule for the inference of the conditional probability of P (A|C), given
intervals on the probabilities P (A|B), P (B|A), P (C|B), and P (B|C), and a
taxonomy on the premises.

In [49], Jaeger develops a method for automatic derivation of probabilistic
inference rules for conditional probabilities comparable to the method pro-
posed in Chapter 5. Given parameterized bounds on some input conditional
probabilities, a parameterized optimal bound for a target output conditional
probability is calculated. This parameterized solution is then the rule. Jaeger
however does not use elimination methods as we do in Chapter 5, but instead
analyzes a list of the parameterized vertices of the polytope V (C) consisting
of the instantiations that satisfy the input constraints.

7.2 Combinatorics

7.2.1 Approximate Inclusion-Exclusion

Probabilists and statisticians frequently use the inclusion-exclusion bounds to
approximate the probability of a union of finitely many events. The inclusion-

140 CHAPTER 7. RELATED WORK

exclusion principle was first discovered by Jordan [52] and later on rediscov-
ered by Bonferroni [7]. The inclusion-exclusion principle allows to calculate
the number of elements in the union of sets S1, . . . , Sn given the numbers of
elements in all possible intersections Si1 ∩ . . .∩Sik , 1 ≤ i1, . . . , ik ≤ n, k ≤ n.
If for some of these intersections, the number of elements is missing, we can
only calculate an approximate bound on the size of the union S1 ∪ . . . ∪ Sn.
It is exactly this type of problems that is studied in approximate inclusion-
exclusion [31, 53, 65]. Melkman and Shimony study in [65] the case in which
only the count of the number of items in S1 ∩ . . . ∩ Sn is missing. As is
showed in Chapter 4, in this case, the bounds on the union S1 ∪ . . . ∪ Sn
provide us with bounds on the intersection S1 ∩ . . .∩ Sn. Both problems are
alike, and hence many of the results of Melkman and Shimony also apply
to our framework. Actually, the completeness and non-redundancy of the
inclusion-exclusion rules RI(J) for the frequency of the itemset I are also
implicitly proven in [65], even though the proof there is much more involved,
and does not provide the same insight as our proof in Chapter 4.

Bonferroni inequalities are a specific family of combinatorial inequalities
for approximate inclusion-exclusion when all intersections up to a fixed con-
stant k are known [31]. An interesting application of Bonferroni inequalities
to data mining is described in [50, 51]. Based on the frequencies of some
itemsets, bounds on the frequency of arbitrary boolean expressions are cal-
culated using these Bonferroni inequalities. The bounds obtained in [50, 51]
are however not tight.

7.2.2 Fréchet Bounds

Fréchet bounds [29] are often used in stochastic processes to estimate an
upper and/or a lower bound on the queue length in a queuing system with
two different but known marginal inter-arrivals times distributions of two
types of customers. The simplest form of the bounds is the following.

max(0, P (A) + P (B)− 1) ≤ P (AB) ≤ min(P (A), P (B))

The lower bound corresponds to the rule RAB({}). The upper bounds are
the monotonicity rules RAB(A) and RAB(B).

7.2.3 Statistical Data Protection

In statistical databases the privacy of data is studied [28, 24, 23]. In many
situations it is common to only provide aggregated data instead of giving

7.3. DATA MINING 141

the individual data records. An example of this is census data, in which
the individual data records are protected, but at the same time aggregated
values are published. Statistical data protection tries to answer the question
to which extend the privacy of the data might be compromised by combining
different aggregates. In this context the questions studied are very alike our
work. If the aggregates are sums, then the main question becomes “based
on the sums for different combinations of characteristics, what can we derive
for other combinations.” Such a combination of characteristics can be seen
as an itemset, and the count as its support.

7.3 Data Mining

7.3.1 Counting Inference

MAXMINER [6] In MAXMINER, Bayardo uses the following rule to
derive a lower bound on the support of an itemset:

support(I ∪ J) ≥ support(I)−
∑

j∈J

drop(K, j)

with K ⊂ I, and drop(K, j) = support(K)−support(K∪{j}). The intuition
behind this rule is the following: drop(K, j) expresses how many transactions
containK, but do not contain j. Hence, if we add the item j to the itemsetK,
the support will decrease. How much the support drops from K to K ∪ {j},
is expressed by drop(K, j).

∑
j∈J drop(K, j) is used as an estimate of the

drop from I to I ∪ J . Indeed, for every transaction T that does contain I,
but does not contain I ∪ J , there is at least one j ∈ J such that T does
not contain K ∪ {j}. Bayardo uses this rule when searching for the frequent
itemsets of maximal cardinality. The lower bound is used to jump from I to
I ∪ J in the search space whenever the lower bound on I ∪ J is at least as
high as the frequency threshold.

For K = I and J = {i1, i2}, this rule correspond to RI∪{i1,i2}(I). In
general, the rule used in MAXMINER can be derived from the deduction
rules in Chapter 4, because the deduction rules RI(J) are complete. For
example, let I = abcd, J = bcd, and K = {}. The MAXMINER rule can be
derived from the rules Rabcd(.) as follows:

3 · Rabcd({}) + 2 · Rabcd(a) + 2 · Rabcd(b) + 2 · Rabcd(c) + 2 · Rabcd(d)
+Rabcd(ab) +Rabcd(ac) +Rabcd(ad) +Rabcd(bc) +Rabcd(bd)
+Rabcd(cd) +Rabcd(abc) +Rabcd(abd) +Rabcd(acd) +Rabcd(bcd)

142 CHAPTER 7. RELATED WORK

gives the MAXMINER rule

support(abcd) ≥
support(a) + support(b) + support(c) + support(d)− 3support({}) .

PASCAL In their PASCAL-algorithm, Bastide et al. [5] use counting
inference to avoid counting the support of all candidates. The rule they
are using to avoid counting is based on our rule RI(I − {i}). In fact, the
PASCAL-algorithm is the Apriori- algorithm in which the counting of sets
derivable with RI(I − {i}) are not counted in the database. In view of the
deduction rules presented in Chapter 4, PASCAL can straightforwardly be
extended using all rules RI(.) for a candidate set I.

7.3.2 Interactive Association Rule Mining

We would also like to point out some analogues with interactive association
rule mining. In [36, 37], the authors develop a framework that allows to reuse
results of previous data mining queries. For example, parts of the answer to
the query asking for the supports of all itemsets containing a certain item A
can be reused to answer the query that asks for the support of all itemsets
that do not contain B. The deduction rules introduced here can be used
orthogonally to this approach. Based on previous results, bounds on the
support of new, not yet counted itemsets can be calculated using the supports
of other itemsets.

7.3.3 Deduction

Another application of deduction rules is developed in [38]. Based on the
observation that highly frequent items tend to blow up the output of a data
mining query by an exponential factor, the authors develop a technique to
leave out these highly frequent items, and to reintroduce them after the
mining phase by using a deduction rule, called the multiplicative rule. The
multiplicative rule can be stated as follows: let I, J be itemsets, then

support(I ∪ J,D) ≥ support(I,D) + support(J,D)− support({},D) .

This rule can be derived from the rules in our framework. For J = {a, b} for
example, the multiplicative rule corresponds to RI∪{a,b}(I).

7.4. CONCISE REPRESENTATIONS 143

7.3.4 Completeness

There have been attempts to prove completeness results for pruning in fre-
quent itemset mining. One such attempt is described shortly in [59]. In
the presence of constraints on the allowable itemsets, the authors introduce
the notion of ccc-optimality1. ccc-optimality can intuitively be understood
as “in every loop, the algorithm only generates and tests allowable itemsets
that can still be frequent. For this the algorithm does not use redundant
operations.” Our notion of tight entailment however, is more general, since
we do not restrict ourselves to a particular algorithm.

7.4 Concise Representations

In the literature, there exist already a number of concise representations
for frequent itemsets. In Chapter 6, we discussed different proposals in the
literature in depth. The main goal of concise representations is to store
the collection of frequent itemsets and their frequencies in an as concise as
possible way. In this perspective, more efficient deduction methods allow for
making more concise representations, since the more we can derive, the less
we need to store. Since in Chapter 6 the different concise representations
have been studied in much detail we refer to Chapter 6 for related work
about this topic.

1ccc-optimality stands for Constraint Checking and Counting-optimality

8
Summary and Further Work

Summary Frequent itemset mining is one of the most important problems
in data mining. Based on the importance in frequent set mining of pruning
criteria such as the monotonicity principle, we studied what information can
be derived if we have information about the frequencies of some itemsets. To
this end, frequency constraints, such as freq(I) ∈ [l, u], were introduced as a
mean to model information about frequencies.

In Chapter 2, we concentrated on the formal introduction of frequency
constraints and on satisfiability and implication problems. The goal of this
chapter was to establish the general structure and properties of the problems
studied in the thesis. The satisfiability problem of a set of frequency con-
straints was formalized as the FREQSAT-problem, and can be seen as an
algorithm-independent abstraction and generalization of the pruning prob-
lem. The implication problems were formalized as FREQENT for implication
and T-FREQENT for tight implication. The general properties of frequency
constraints were explored. Connection between the satisfiability and impli-
cation problems for frequencies and solving linear programming problems
and were given. This connection resulted in a the proof that FREQSAT is
NP-complete and a graphical interpretation of the FREQSAT-problem.

Due to the high complexity of the FREQSAT-problem, special cases are
studied. A first restriction, described in Chapter 3, was to focus on lower
bounds and upper bounds in isolation. In the lower bound case, only expres-
sions of the form freq(I) ≥ l were allowed. Since systems of such expressions
are always satisfiable, the notion of completeness was introduces. Complete-
ness of a set of frequency constraints expresses that the information implicitly
contained in the set is also explicitly contained. Hence, all constraints in the
set must be tightly entailed. For the lower bounds situation, a complete ax-
iomatization was given, and it was proven that completeness can be decided
in polynomial time. In the upper bound case only constraints of the form
freq(I) ≤ u were studied. Deciding completeness for sets of upper bound

145

146 CHAPTER 8. SUMMARY AND FURTHER WORK

constraints was shown to be logarithmic space.

Another special case, studied in Chapter 4, was based on the information
we have in the Apriori-algorithm. In this algorithm, for each candidate set,
we know the frequency of all its subsets exactly. Hence, tight implication for
a set I, based on the set of constraints {freq(J) = fJ | J ⊂ I} was studied.
Sound and complete deduction rules for this type of tight implication were
given. Based on the deduction rules, the notion of derivable itemset was
introduced. An itemset is called derivable in a database D, if, based on the
frequencies of its subsets, the frequency of the set can be derived perfectly.
As some limited experiments in Chapter 4 showed, this situation is not very
uncommon. This observation was further strengthened by a theorem stating
that any set of size larger than 2 log(D)+1 must be derivable in the database
D. Based on the properties of derivable itemsets, such as monotonicity, an
algorithm for finding all frequent non-derivable itemsets is proposed.

In Chapter 6, an application of the deduction rules in Chapter 4 is
given. Based on the deduction rules, different concise representations are
constructed. Also an overview of the concise representations in the literature
is given, and the connections with the representations based on the deduction
rules are given by constructing a unifying framework.

In Chapter 7, related work was discussed. Especially links with proba-
bilistic logics, Bonferroni inequalities, and optimization of frequent itemset
mining algorithms is explored.

Further work For our further work, there are different directions we can
pursue.

- In Chapter 4, we studied a special case that was closely connected to
the Apriori-algorithm, a breadth-first algorithm. Another interesting
problem is to see what can be derived from the information we get
in depth-first algorithms such as the FPGrowth-algorithm [43], and to
extend the notion of a derivable itemset to this situation.

- Besides frequent itemset mining, in other problems monotonicity of
frequency is very important as well. A future research direction is
to explore to what extent the deduction rules can be extended to for
example approximate dependencies [54], roll-up dependencies [79, 21],
sequence mining [64, 3], and binary expressions [16]. In [20], a pre-
liminary study about the applicability of monotonicity for data mining
queries defined in a simple data mining query language is presented.

147

This work can be seen as a first step in the direction of extending the
deduction rules to a broader framework.

- The concise representation for frequent itemsets based on the deduction
rules presented in Chapter 6 are all subset-closed. A possible extension
is to include representations “with holes.” The study of such represen-
tations requires the development of deduction rules for the frequency
of a set I if both frequencies of sub- and supersets are known.

- Up to now we used mainly combinatorial techniques for deriving lower
and upper bounds on the frequency of itemsets. Instead of these com-
binatorial bounds, statistical estimates for the frequency could be used.
For example, in [74], the use of probabilistic models based on maximum
entropy is studied: based on a set of given frequencies, an estimate for
the frequency of a target itemset is calculated, using the principle of
maximum entropy. We are also interested in the other direction: given
a database, and a strategy for inference (e.g. logical implication, or
maximum entropy), find a collection of sets such that this collection
allows for accurate inference of the other frequencies. Since these col-
lections are highly dependent on the inference strategy used, they can
be very different from one strategy to another.

Bibliography

[1] R. Agrawal, T. Imilienski, and A. Swami. Mining association rules be-
tween sets of items in large databases. In Proc. ACM SIGMOD Int.
Conf. Management of Data, pages 207–216, Washington, D.C., 1993.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining association rules.
In Proc. VLDB Int. Conf. Very Large Data Bases, pages 487–499, San-
tiago, Chile, 1994.

[3] R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. IEEE
ICDE Int. Conf. on Data Engineering, pages 3–14, Taipei, Taiwan, 1995.

[4] K. Ali, S. Manganaris, and R. Srikant. Partial classification using associ-
ation rules. In Proc. KDD Int. Conf. Knowledge Discovery in Databases,
pages 115–118, 1997.

[5] Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal. Min-
ing frequent patterns with counting inference. SIGKDD Explorations,
2(2):66–75, 2000.

[6] R. J. Bayardo. Efficiently mining long patterns from databases. In Proc.
ACM SIGMOD Int. Conf. Management of Data, pages 85–93, Seattle,
Washington, 1998.

[7] C.E. Bonferroni. Teoria statistica della classi e calcolo della probabilitá.
Publicazioni del R. Instituto Superiore di Scienze Economiche e Com-
merciali di Firenze, 8:1–62, 1936.

[8] J.-F. Boulicaut and A. Bykowski. Frequent closures as a concise repre-
sentation for binary data mining. In Proc. PaKDD Pacific-Asia Conf.
on Knowledge Discovery and Data Mining, pages 62–73, 2000.

[9] J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Approximation of fre-
quency queries by means of free-sets. In Proc. PKDD Int. Conf. Prin-
ciples of Data Mining and Knowledge Discovery, pages 75–85, 2000.

149

150 BIBLIOGRAPHY

[10] J.-F. Boulicaut, M. Klemettinen, and H. Mannila. Modeling KDD
processes within the inductive database framework. In Proc. DaWaK
Int. Conf. Data Warehousing and Knowledge Discovery, pages 293–302,
1999.

[11] S. Brin, R. Motwani, J.D. Ullman, and S. Tsur. Dynamic itemset count-
ing and implication rules for market basket data. In Proc. ACM SIG-
MOD Int. Conf. Management of Data, pages 255–264, Tucson, AZ, 1997.

[12] A. Bykowski and C. Rigotti. A condensed representation to find frequent
patterns. In Proc. PODS Int. Conf. Principles of Database Systems,
2001.

[13] A. Bykowski, J.K. Seppänen, and J. Hollmén. Model-independent
bounding of the supports of boolean formulae in binary data. In In
Proceedings ECML-PKDD Workshop Knowledge Discovery in Inductive
Databases (KDID), pages 20–31, 2002.

[14] T. Calders. Deducing bounds on the frequency of itemsets. In EDBT
Workshop DTDM Database Techniques in Data Mining, 2002.

[15] T. Calders and B. Goethals. Mining all non-derivable frequent itemsets.
In Proc. PKDD Int. Conf. Principles of Data Mining and Knowledge
Discovery, pages 74–85. Springer, 2002.

[16] T. Calders and J. Paredaens. Mining frequent binary expressions. In
Proc. DaWaK Int. Conf. Data Warehousing and Knowledge Discovery,
pages 399–408, Greenwich, 2000.

[17] T. Calders and J. Paredaens. A theoretical framework for reason-
ing about frequent itemsets. Technical Report 2000-06, University of
Antwerp, Dept. Math. & Computer Science, 2000.

[18] T. Calders and J. Paredaens. Axiomatization of frequent sets. In Proc.
ICDT Int. Conf. Database Theory, pages 204–218, London, UK, 2001.

[19] T. Calders and J. Paredaens. Axiomatization of frequent itemsets. The-
oretical Computer Science, 290(1):669–693, 2003.

[20] T. Calders and J. Wijsen. On monotone data mining langauages.
In Proc. DBPL Workshop on Databases and Programming Languages,
2001.

BIBLIOGRAPHY 151

[21] T. Calders, J. Wijsen, and R.T. Ng. Searching for dependencies at multi-
ple abstraction levels. ACM Trans. on Database Systems, 27(3):229–260,
2002.

[22] G.B. Dantzig. Linear Programming and Extensions. Princeton Univer-
sity Press, 1963.

[23] A. Dobra. Computing sharp integer bounds for entries in
contingency tables given a set of fixed marginals. Techni-
cal report, Department of Statistics, Carnegie Mellon University,
http://www.stat.cmu.edu/∼adobra/bonf-two.pdf, 2001.

[24] A. Dobra and S.E Fienberg. Bounds for cell entries in contingency
tables given marginal totals and decomposable graphs. Proceedings of
the National Academy of Sciences, 97(22):11885–11892, 2000.

[25] G. Dong and J. Li. Efficient mining of emerging patterns: Discovering
trends and differences. In Proc. KDD Int. Conf. Knowledge Discovery
in Databases, pages 43–52, 1999.

[26] R. Fagin, J. Halpern, and N. Megiddo. A logic for reasoning about
probabilities. Information and Computation, 87(1,2):78–128, 1990.

[27] R. Fagin and M. Y. Vardi. Armstrong databases for functional and
inclusion dependencies. Information Processing Letters, 16(1):13–19,
1983.

[28] S. E. Fienberg. Fréchet and bonferroni bounds for multi-way tables of
counts with applications to disclosure limitation. In Statistical Data
Protection, 1998.

[29] M. Fréchet. Sur les tableaux de correlation dont les marges sont donnés.
Ann. Univ. Lyon Sect A, Series 3, 14:53–77, 1951.

[30] A. M. Frisch and P. Haddawy. Anytime deduction for probabilistic logic.
Artificial Intelligence, 69(1,2):93–112, 1994.

[31] J. Galambos and I. Simonelli. Bonferroni-type Inequalities with Appli-
cations. Springer, 1996.

[32] B. Ganter and R. Wille. Formal Concept Analysis — Mathematical
Foundations. Springer, 1999.

[33] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-completeness. Freeman, New York, 1979.

152 BIBLIOGRAPHY

[34] G. Georgakopoulos, D. Kavvadias, and C. H. Papadimitriou. Proba-
bilistic satisfiability. Journal of Complexity, 4:1–11, 1988.

[35] B. Goethals. Efficient Frequent Pattern Mining. PhD thesis, Transna-
tional University Limburg, Belgium, December 2002.

[36] B. Goethals and J. Van den Bussche. A priori versus a posteriori filtering
of association rules. In ACM SIGMOD Workshop on Research Issues in
Data Mining and Knowledge Discovery, 1999.

[37] B. Goethals and J. Van den Bussche. On supporting interactive associ-
ation rule mining. In Proc. DaWaK Int. Conf. Data Warehousing and
Knowledge Discovery, pages 307–316, 2000.

[38] D. Groth and E. Robertson. Discovering frequent itemsets in the pres-
ence of highly frequent items. In In Proceedings Workshop on Rule Based
Data Mining, in Conjunction with the 14th International Conference On
Applications of Prolog, 2001.

[39] D. Gunopulos, H. Mannila, and S. Saluja. Discovering all most specific
sentences by randomized algorithms. In Proc. ICDT Int. Conf. Database
Theory, pages 215–229, 1997.

[40] G. Hadley. Linear Programming. Addison-Wesley, Reading, Mass., 1962.

[41] T. Hailperin. Sentential Probability Logic. Lehigh University Press, 1996.

[42] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Mor-
gan Kaufmann, 2000.

[43] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In Proc. ACM SIGMOD Int. Conf. Management of Data,
pages 1–12, Dallas, TX, 2000.

[44] D. Hand, H. Mannila, and P. Smyth. Principles of Data Mining. MIT
Press, 2001.

[45] P. Hansen and B. Jaumard. Probabilistic satisfiability. Les Cahiers du
GERAD G-96-31, GERAD, 1996.

[46] P. Hansen, B. Jaumard, G.-B. D. Nguets, and M. P. de Aragäo. Models
and algorithms for probabilistic and bayesian logic. In Proc. IJCAI Int.
Joint Conf. Artificial Intelligence, pages 1862–1868, Montreal, Canada,
1995.

BIBLIOGRAPHY 153

[47] S. Hettich and S. D. Bay. The UCI KDD Archive.
[http://kdd.ics.uci.edu]. Irvine, CA: University of California, De-
partment of Information and Computer Science, 1999.

[48] J. Hipp, U. Güntzer, and G. Nakhaeizadeh. Algorithms for association
rule mining - a general survey and comparison. SIGKDD Explorations,
2(1):58–64, 2000.

[49] M. Jaeger. Automatic derivation of probabilistic inference rules. Int. J.
of Approxiamte Reasoning, 28(1):1–22, 2001.

[50] S. Jaroszewicz and D. A. Simivici. Support approximations using
bonferroni-type inequalities. In Proc. PKDD Int. Conf. Principles of
Data Mining and Knowledge Discovery, pages 212–224, 2002.

[51] S. Jaroszewicz, D. A. Simivici, and I. Rosenberg. An inclusion-exclusion
result for boolean polynomials and its applications in data mining. In
Proc. of the Discrete Mathematics in Data Mining Workshop, SIAM
Datamining Conference, 2002.

[52] Ch. Jordan. The foundations of the theory of probability. Mat. Phys.
Lapok, 34:109–136, 1927.

[53] J. Kahn, N. Linial, and A. Samorodnitsky. Inclusion-exclusion: Exact
and approximate. Combinatorica, 16:465–477, 1996.

[54] J. Kivinen and H. Mannila. Approximate inference of functional de-
pendencies from relations. Theoretical Computer Science, 149:129–149,
1995.

[55] D.E. Knuth. Fundamental Algorithms. Addison-Wesley, Reading, Mas-
sachusetts, 1997.

[56] M. Kryszkiewicz. Concise representation of frequent patterns based on
disjunction-free generators. In Proc. IEEE Int. Conf. on Data Mining,
pages 305–312, 2001.

[57] M. Kryszkiewicz and M. Gajek. Concise representation of frequent pat-
terns based on generalized disjunction-free generators. In Proc. PaKDD
Pacific-Asia Conf. on Knowledge Discovery and Data Mining, pages
159–171, 2002.

154 BIBLIOGRAPHY

[58] M. Kryszkiewicz and M. Gajek. Why to apply generalized disjunction-
free generators representation of frequent patterns? In Proc. Interna-
tional Syposium on Methodologies for Intelligent Systems, pages 382–
392, 2002.

[59] L. V.S. Laksmanan, R.T. Ng, J. Han, and A. Pang. Optimization of con-
strained frequent set queries with 2-variable constraints. In Proc. ACM
SIGMOD Int. Conf. Management of Data, pages 157–168, Philadelphia,
Pennsylvania, 1999.

[60] T. Lukasiewicz. Local probabilistic deduction from taxonomic and prob-
abilistic knowledge-bases over conjunctive events. Journal of Approxi-
mate Reasoning, 21:23–61, 1999.

[61] T. Lukasiewicz. Probabilistic logic programming with conditional con-
straints. INFSYS Research Report 1843-00-01, Institut für Informations-
systeme, Abteilung Wissenbasierte Systeme, 2000.

[62] H. Mannila and H. Toivonen. Multiple uses of frequent sets and con-
densed representations. In Proc. KDD Int. Conf. Knowledge Discovery
in Databases, 1996.

[63] H. Mannila and H. Toivonen. Levelwise search and borders of theories
in knowledge discovery. DMKD, 1(3):241–258, 1997.

[64] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovering frequent
episodes in sequences. In Proc. KDD Int. Conf. Knowledge Discovery
in Databases, pages 210–215, 1995.

[65] A. A. Melkman and S. E. Shimony. A note on approximate inclusion-
exclusion. Discrete Applied Mathematics, 73:23–26, 1997.

[66] S. Morishita and J. Sese. Traversing itemset lattice with statistical met-
ric pruning. In Proc. PODS Int. Conf. Principles of Database Systems,
pages 226–236, 2000.

[67] K. G. Murty. Linear Programming. Wiley, 1983.

[68] N. Nilsson. Probabilistic logic. Artificial Intelligence, 28:71–87, 1986.

[69] C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[70] C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Al-
gorithms and Complexity. Prentence-Hall, Englewood Cliffs, N.J., 1982.

BIBLIOGRAPHY 155

[71] J. B. Paris. The Uncertain Reasoner’s Companion. Tracts in Theoretical
Computer Science 39. Cambridge University Press, 1994.

[72] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent
closed itemsets for association rules. In Proc. ICDT Int. Conf. Database
Theory, pages 398–416, 1999.

[73] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining of
association rules using closed itemset lattices. Journal of Information
Systems, 24(1):25–46, 1999.

[74] D. Pavlov, H. Mannila, and P. Smyth. Probabilistic models for query
approximation with large sparse binary datasets. In Uncertainty in Arti-
ficial Intelligence: Proceedings of the Sixteenth Conference (UAI-2000),
pages 465–472, 2000.

[75] J. Pei, J. Han, and R. Mao. Closet: An efficient algorithm for min-
ing frequent closed itemsets. In ACM SIGMOD Workshop on Research
Issues in Data Mining and Knowledge Discovery, Dallas, TX, 2000.

[76] G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, and L. Lakhal. Fast
computation of concept lattices using data mining techniques. In Knowl-
edge Representation Meets Databases, pages 129–139, 2000.

[77] P.-N. Tan and V. Kumar. Interestingness measures for association pat-
terns : A perspective. In KDD’2000 Workshop on Postprocessing in
Machine Learning and Data Mining, 2000.

[78] H. Toivonen. Sampling large databases for association rules. In Proc.
VLDB Int. Conf. Very Large Data Bases, pages 134–145. Morgan Kauf-
man, 1996.

[79] J. Wijsen, R.T. Ng, and T. Calders. Discovering roll-up dependencies.
In Proc. KDD Int. Conf. Knowledge Discovery in Databases, pages 213–
222, San Diego, 1999.

[80] M.J. Zaki and C. Hsiao. ChARM: An efficient algorithm for closed
association rule mining. In Proc. SIAM Int. Conf. on Data Mining,
2002.

[81] Z. Zheng, R. Kohavi, and L. Mason. Real world performance of asso-
ciation rule algorithms. In Proc. KDD Int. Conf. Knowledge Discovery
in Databases, pages 401–406. ACM Press, 2001.

A
Nederlandse samenvatting

A.1 Voorkennis

De vooruitgang in databases en technologie maakt het mogelijk om grote
hoeveelheden data te verzamelen, op te slaan en te bevragen. Bijna alle
bedrijven en organisaties beschikken over enorme hoeveelheden data. Echter,
niet enkel de hoeveelheid data is belangrijk, maar ook de mogelijkheid om
ze te analyseren. Voor een bedrijf is het van vitaal belang om uit de data
nuttige informatie en kennis te extraheren. Deze uitdaging is de motivatie
voor data mining , een relatief jonge wetenschapsdiscipline, gesitueerd op het
knooppunt tussen database onderzoek , statistiek en machine learning . In [44]
wordt data mining als volgt gedefinieerd:

Data Mining is de analyse van grote observationele datasets met
als doel het vinden van onverwachte verbanden en het samenvat-
ten van de data op nieuwe manieren die voor de eigenaar van de
data zowel verstaanbaar als bruikbaar zijn.

We identificeren de belangrijkste begrippen in deze definitie:

- Analyse. In data mining tracht men belangrijke relaties, patronen en
trends te identificeren met als doel een beter begrip van de data te
krijgen. Hiervoor worden automatische tools ontwikkeld die de analist
moeten helpen om een beter inzicht in de data te krijgen, en grote
brokken data te verwerken tot begrijpbare kennis.

- Grote observationele datasets. De datasets die in data mining toepassin-
gen beschouwd worden, zijn over het algemeen erg groot. Deze eigen-
schap maakt dat data mining algoritmes zeer efficiënt en schaalbaar
moeten zijn om deze grote datasets aan te kunnen.

157

158 APPENDIX A. NEDERLANDSE SAMENVATTING

- Onverwachte relaties. In tegenstelling tot traditionele database syste-
men is er in data mining niet zo iets als een exacte query die beantwoord
moet worden. In een ideale situatie, zou een gebruiker enkel het type
relatie die hij of zij wil vinden ingeven, en het data mining algoritme
gaat dan zelf op zoek naar de patronen van dat type die in de database
aanwezig zijn.

- Samenvatten. De uitvoer van een data mining algoritme geeft typisch
algemene kenmerken van de dataset. Deze karakteristieken bieden een
ander, meer beknopt gezichtspunt op de data.

- Verstaanbaar en bruikbaar. De uitvoer van een data mining algoritme is
voor een gebruiker enkel nuttig indien het gëınterpreteerd kan worden.
Dit impliceert dat modellen die een grote voorspellende kracht hebben,
maar niet door mensen begrepen kunnen worden, niet in aanmerking
komen. We benadrukken hier echter dat deze vereiste niet door alle
data mining onderzoekers onderschreven wordt.

Het Frequent Itemset Probleem Een van de meest prominente pro-
blemen in data mining is ongetwijfeld het Frequent Itemset-probleem [1].
De originele context van dit probleem was market basket analysis (letterlijk:
analyse van winkelmandjes). Beschouw een winkel die producten uit een
verzameling I verkoopt. Van elke klant van de winkel wordt bij elk bezoek
telkens de set van aangekochte producten geregistreerd en opgeslagen in een
database D. Zo een set van producten noemen we een transactie. Gebaseerd
op deze database, wil een analist te weten komen welke producten vaak
samen worden verkocht. Deze setting wordt geformaliseerd door het frequent
itemset probleem. Dit probleem is, gegeven een grens s en een database D,
vind alle deelverzamelingen van I die in minstens s van de transacties in
D aanwezig zijn. De deelverzamelingen van I noemen we itemsets. Het
aantal maal dat een itemset I in een database D voorkomt noemen we de
support van I in D, en wordt genoteerd als supp(I,D,). De frequentie van
een itemset I in een database D is de support van I gedeeld door het totaal
aantal transacties in D en wordt genoteerd als freq(I,D). Itemsets die een
support hoger dan s hebben worden (s-)frequent genoemd.

Het frequent itemset probleem staat in vele data mining algoritmes cen-
traal. Het is een belangrijk deelprobleem bij het zoeken naar onder andere:
associatie regels [1], sequentiële patronen [3], classificatie [4] en “emerging”
patronen [25]. Sinds de introductie van het frequent itemset probleem in [1]
zijn reeds vele verschillende benaderingen en algoritmes voorgesteld, vooral

A.1. VOORKENNIS 159

in de context van associatie regels [1, 2, 43]. Voor overzichten van de ver-
schillende technieken verwijzen we naar [43, 48, 81] en [35, Ch. 2].

Ondanks de eenvoudige definitie is het frequent itemset probleem verre
van triviaal. Zo is bijvoorbeeld in [39] aangetoond dat gegeven een grens
s voor de support, een database D en een natuurlijk getal k, het beslis-
singsprobleem dat vraagt of er een s-frequente itemset van lengte k bestaat
in D, NP-compleet is.

Monotoniciteit Alle algoritmes voor het vinden van frequente patronen
maken gebruik van het volgende monotoniciteits principe [63].

Laat I1 ⊆ I2 twee itemsets zijn. In elke transaction database D,
is de frequentie of I2 maximaal zo hoog als de frequentie van I1.

Deze simpele deductieregel is reeds vele malen succesvol toegepast. Het beste
voorbeeld hiervan is het bekende Apriori-algoritme [2]. Om de monotoniciteit
maximaal uit te buiten, start het Apriori-algoritme met het tellen van de
singleton itemsets in één pass over de database. In een tweede pass worden
dan enkel de itemsets {i1, i2} geteld waarvan {i1} en {i2} s-frequent bevonden
waren in de vorige pass. De andere itemsets van grootte 2 worden gepruned ,
aangezien ze nooit frequent kunnen zijn, gezien het monotoniciteitsprincipe.
In de derde pass over de database worden dan enkel itemsets {i1, i2, i3} van
grootte 3 geteld waarbij {i1, i2}, {i1, i3}, en {i2, i3} allen s-frequent waren in
de vorige stap. Dit gaat zo voort totdat er geen nieuwe frequente itemsets
meer worden gevonden. De zoektocht naar frequente itemsets door het Apri-

ori-algoritme kan als dusdanig beschouwd worden als de afwisseling tussen een
tel-fase en een meta-fase. In de tel-fase worden de frequenties van een aantal
vooraf bepaalde kandidaten geteld. In de meta-fase worden de resultaten van
de tel-fase daarna geanalyseerd. Gebaseerd op het monotoniciteitsprincipe
worden dan sommige itemsets a-priori , dat wil zeggen, zonder ze te tellen
in de database, uitgesloten. Deze bemerkingen zijn ook van toepassing op
andere frequent set mining algoritmes zoals DIC [11] en FPGrowth [43]. Sinds
de invoering van het Apriori-algoritme zijn al vele verbeteringen voorgesteld.
De meeste optimalisaties trachten ofwel de invoer zodanig te reorganiseren
dat het tellen van de itemsets eenvoudiger wordt, ofwel het aantal passes over
de database te minimaliseren. Er is echter weinig aandacht besteed aan het
verbeteren van de pruning.

160 APPENDIX A. NEDERLANDSE SAMENVATTING

A.2 Onderwerp van de thesis

Onderzoeksvraag van deze thesis Ondanks het feit dat monotoniciteit
van frequentie zeer vaak gebruikt wordt, is er weinig eerder werk dat tracht
deze regel uit te breiden. Deze thesis bestudeert deductie regels, zoals het
monotoniciteitsprincipe, op een algemene en theoretische manier. Dit houdt
onder meer in dat we ons niet concentreren op een bepaald algoritme. De
centrale vraag kan nu als volgt geformuleerd worden:

Gegeven informatie over de frequenties van de itemsets I1, . . . , In,
welke informatie kunnen wij afleiden in verband met de frequen-
ties van andere itemsets?

In onze benadering van dit probleem staat de notie van een frequentie con-
straint centraal. Een frequentie constraint wordt gedefinieerd als een uit-
drukking freq(I) ∈ [l, u], met I een itemset, en l, u rationale getallen tussen 0
en 1. We zeggen dat een database D een frequentie constraint freq(I) ∈ [l, u]
waar maakt indien freq(I,D) ∈ [l, u]. De gegeven informatie in de onder-
zoeksvraag wordt nu gemodelleerd als een eindige verzameling frequentie
constraints. Een verzameling frequentie constraints C impliceert de frequen-
tie constraint freq(I) ∈ [l, u], als elke database die elke constraint in C waar
maakt, eveneens freq(I) ∈ [l, u] waar maakt. Dus: in elke situatie waarin
C waar is, moet ook freq(I) ∈ [l, u] waar zijn. Beschouw bijvoorbeeld de
volgende verzameling frequentie constraints.

C = { freq({a}) ∈ [0.8, 0.9] , freq({b}) ∈ [0.6, 0.8] } .

Omwille van het monotoniciteitsprincipe weten we dat de frequentie van
{a, b} nooit groter kan zijn dan de frequentie van {b}. Omdat de frequentie
van {b} maximaal 0.8 is in C, kunnen we dus besluiten dat freq({a, b}) ∈
[0, 0.8] gëımpliceerd wordt door C. Een andere belangrijke notie is die van
strikte implicatie. Strikte implicatie drukt uit dat een interval [l, u] het beste
interval is dat we kunnen vinden voor een itemset I, gebaseerd op een verza-
meling frequentie constraints C. Het beste interval betekent hier dat voor elk
kleiner interval [l′, u′], het niet langer waar is dat freq(I) ∈ [l′, u′] gëımpliceerd
wordt door C. Beschouw opnieuw de verzameling frequentie constrains C die
hierboven gegeven is. Ondanks het feit dat freq({a, b}) ∈ [0, 0.8] gëımpliceerd
wordt door C, is deze implicatie niet strikt. Aangezien ten minste een fractie
0.8 van de transacties a bevat, en een fractie van ten minste 0.6, b bevat, moet
er minstens een overlap van 0.4 zijn tussen de transacties die a bevatten en
de transacties die b bevatten. Daarom moet er minstens een fractie van 0.4

A.2. ONDERWERP VAN DE THESIS 161

van de transacties de itemset {a, b} bevatten. Dus, de frequentie van {a, b}
moet in het interval [0.4, 0.8] vallen. We kunnen nu aantonen dat dit interval
strikt is door twee databases D1 en D2 te geven, die beide C waarmaken,
en tegelijkertijd freq({a, b},D1) = 0.4, en freq({a, b},D2) = 0.8 hebben. De
volgende databases zijn hier voorbeelden van.

D1 =

TID Items

1 a
2 a
3 a, b
4 a, b
5 b

D2 =

TID Items

1 a, b
2 a, b
3 a, b
4 a, b
5

Veronderstel nu bijvoorbeeld dat 0.4 geen strikte ondergrens zou zijn voor
de frequentie van {a, b}. In dat geval zou er een getal l, strikt groter dan
0.4 bestaan, zodanig in elke database die C waarmaakt, de frequentie van
{a, b} minstens l is. Dit is echter in contradictie met freq({a, b},D1) = 0.4.
Feitelijk is D1 een tegenvoorbeeld voor alle l strikt groter dan 0.4. We zullen
databases zoals D1 en D2, bewijs-databases noemen. Deze bewijs-databases
spelen een zeer belangrijke rol in de theorie die we ontwikkelen in de thesis.

Een centraal probleem dat we bestuderen in de thesis is het FREQSAT-
probleem. FREQSAT is het volgende probleem: gegeven een verzameling
frequentie constraints, bestaat er een database die deze alle constraints in
deze verzameling gelijktijdig waar maakt? In de thesis tonen we aan dat dit
probleem NP-compleet is.

Speciale gevallen Omwille van de hoge complexiteit van FREQSAT, is
de bruikbaarheid in de praktijk beperkt. Omwille hiervan bestuderen we
in de thesis speciale gevallen die een lagere complexiteit hebben, maar nog
steeds interessant zijn vanuit een praktisch standpunt. De volgende gevallen
worden in de thesis besproken.

- Ondergrenzen. Enkel ondergrenzen op de frequentie van de itemsets
worden beschouwd; dat wil zeggen, we beschouwen enkel frequentie
constraints van de vorm freq(I) ∈ [l, 1]. Een verzameling van zulke
constraints wordt een systeem van frequente sets genoemd. Zulk een
systeem wordt compleet genoemd indien alle informatie in het systeem
strikt is. Voor zulke systemen van frequente sets is het antwoord op het
FREQSAT-probleem steeds positief. We tonen aan dat compleetheid
beslist kan worden in polynomiale tijd. We beschrijven eveneens drie
axioma’s, F1, F2, en F3 voor complete systemen van frequente sets.

162 APPENDIX A. NEDERLANDSE SAMENVATTING

- Bovengrenzen. We laten enkel constraints van de vorm freq(I) ∈ [0, u]
toe. Opnieuw is FREQSAT steeds positief. Ondanks het feit dat dit
geval heel sterk op het vorige lijkt, is het veel simpeler. Bijvoorbeeld:
de compleetheid van het systeem kan beslist worden met logaritmische
ruimte, en slechts twee eenvoudige axioma’s, IF1 en IF2 zijn nodig.

- Exacte frequenties, alle deelverzamelingen. Dit is ongetwijfeld het meest
interessante geval. Er worden enkel intervallen afgeleid voor de fre-
quentie van itemsets waarvan we de frequentie van alle subsets exact
weten. In dat geval kan de deductie van strikte grenzen in polynomiale
tijd gebeuren. Dit geval is zeer interessant omdat de veronderstelde in-
formatie exact de informatie is die we hebben in het Apriori-algoritme.
Gebaseerd op deductie regels die we voor dit geval vinden, worden aflei-
dbare itemsets gedefiniëerd. Een itemset I wordt afleidbaar in database
D genoemd indien zijn frequentie uniek bepaald wordt door de frequen-
ties van zijn deelverzamelingen. Er wordt een algoritme ontwikkeld om
alle niet-afleidbare itemsets op een efficiënte manier te vinden.

We bestuderen voor elk geval de complexiteit van FREQSAT en een volledige
axiomatisatie. We tonen ook voor elk geval hoe de frequentie-grenzen van de
itemsets berekend kunnen worden.

Generische techniek We beschrijven een generische techniek die toelaat
om in specifieke gevallen een volledige set axioma’s te vinden. De methode
die hiervoor gebruikt wordt, is gebaseerd op de eliminatietechniek voor li-
neaire stelsels ongelijkheden van Fourier en Motzkin [67]. In de thesis tonen
we hoe een FREQSAT-probleem kan vertaald worden naar een systeem van
lineaire ongelijkheden. In dit systeem elimineren we vervolgens enkele van
de variabelen. Het resulterende systeem bevat dan de axiomatisatie. Bij-
voorbeeld, veronderstel dat we grenzen willen berekenen op de frequentie
van een itemset {b}, gebaseerd op de informatie dat freq({a}) = fa, and
freq({a, b}) = fab. Laat xa staan voor de fractie van de transacties die gelijk
zijn aan {a}, xb die gelijk zijn aan b, en xab die gelijk zijn aan {a, b}. De
(onbekende) frequentie van b wordt genoteerd met fb. We vertalen deze
situatie als het volgende stelsel lineaire ongelijkheden.

(xa + xab = fa) ∧ (xab = fab) ∧ (xb + xab = fb)
∧ (xa ≥ 0) ∧ (xb ≥ 0) ∧ (xab ≥ 0) ∧ (xa + xb + xab ≤ 1) .

A.2. ONDERWERP VAN DE THESIS 163

Vervolgens elimineren we in dit systeem de variabelen xa, xb en xab. Deze
eliminatie resulteert in het volgende, equivalente systeem:

(0 ≤ fa) ∧ (fa ≤ 1) ∧ (0 ≤ fb) ∧ (fb ≤ 1) ∧ (0 ≤ fab) ∧ (fab ≤ 1)
∧ (fab ≤ fa) ∧ (fab ≤ fb) ∧ (fab ≥ fa + fb − 1) .

Dus, we kunnen afleiden dat de frequentie van {b} in het interval
[
max{0, fab} , min{1, 1 + fab − fa}

]

ligt. Dit interval is strikt.

Toepassing: Beknopte representaties Gebaseerd op de deductieregels
kunnen we redundanties in the verzameling frequente itemsets identificeren.
In het bijzonder het speciale geval met exacte frequenties van alle subsets is
hier interessant. We tonen hoe deductie gebruikt kan worden om beknopte
representaties [62] van de verzameling frequente itemsets te maken. Een
beknopte representatie is in feite een deelverzameling van de verzameling
frequente itemsets die nog steeds dezelfde frequentie informatie bevat. Dit
wil zeggen: gebaseerd op de beknopte representatie moeten we in staat zijn
om voor elke itemset te beslissen of hij frequent is of niet. Bovendien moeten
we indien een itemset frequent is, ook zijn frequentie uit de representatie
kunnen afleiden. Aangezien het doel van de deductie regels die we bestuderen
is om frequenties zo exact mogelijk af te leiden, is er een duidelijk verband
met beknopte representaties. Andere representaties in de literatuur zijn: free
sets [9], closed sets [72, 8, 75] en disjunction-free sets [12]. We tonen hoe deze
types beknopte representaties kunnen uitgedrukt worden in termen van de
deductie regels die we bestuderen. Op deze manier vormt de benadering in de
thesis die gebaseerd is op deductie regels een unificatie voor vele voorstellen
in de literatuur.

Gerelateerd werk In artificiële intelligentie zijn probabilistische logica’s
reeds intensief bestudeerd [41, 71]. De link met deze thesis is dat we de fre-
quentie van een itemset I kunnen beschouwen als de kans dat een willekeurig
gekozen transactie uit de transactie database I bevat. Dit wil zeggen, we kun-
nen de transactie database beschouwen als een onderliggende kansruimte, en
de itemsets als de conjunctie van atomen. In Hoofdstuk 7 van de thesis wordt
werk in artificiële intelligentie dat aan het onderwerp van deze thesis gere-
lateerd is, besproken. In het bijzonder de verbanden met de probabilistische
logica van Nilsson [68], de logica om over kansen te redeneren van Fagin,
Hailperin en Megiddo [26] en het werk van Lukasiewicz [60] krijgen speciale
aandacht.

164 APPENDIX A. NEDERLANDSE SAMENVATTING

Ook connecties met data mining worden besproken. Interessant hier is
het MAXMINER algoritme van Bayardo [6], en het PASCAL algoritme van
Bastide e.a. [5] over het zoeken van frequente itemsets. Deze twee algoritmes
maken beiden gebruik van deductie van grenzen op de frequentie van itemsets.

Een ander belangrijk stuk gerelateerd werk betreft beknopte represen-
taties [62]. Het werk over beknopte representaties in Hoofdstuk 6 wordt
vergeleken met andere voorstellen zoals free sets [9], closed sets [72, 8, 75] en
disjunction-free sets [12].

Ook connecties tussen de deductie regels in Hoofdstuk 4 en combinatoriek
zoals Bonferonni ongelijkheden [7, 50, 31] en statistische data bescherming [24]
komen aan bod.

Structuur van de thesis In Hoofdstuk 2 wordt een formele definitie van
de problemen die bestudeerd worden gegeven. De speciale gevallen worden
bestudeerd in Hoofdstuk 3 (Onder- en bovengrenzen) en Hoofdstuk 4 (Ex-
acte frequenties). In Hoofdstuk 5 wordt de generische techniek, gebaseerd op
het eliminatie algoritme van Fourier en Motzkin gëıntroduceerd. Beknopte
representaties worden besproken in Hoofdstuk 6 en gerelateerd werk in Hoofd-
stuk 7. De thesis wordt afgesloten in Hoofdstuk 8 met een samenvatting van
de resultaten en interessante onderzoeksrichtingen voor toekomstig werk.

