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Abstract

Mining streams is a challenging problem, because the data can only be

looked at once, and only small summaries of the data can be stored. We

present a new frequency measure for items in streams that does not rely on

a fixed window length or a time-decaying factor. Based on the properties

of the measure, an algorithm to compute it is shown. Experimental eval-

uation supports the claim that the new measure can be computed from a

summary with very small memory requirements, that can be maintained

and updated efficiently. In this extended abstract, the main points of the

presentation are discussed.

1 Motivation

Mining frequent items over streams received recently a lot of attention. It
presents interesting new challenges over traditional mining in static databases.
It is assumed that the stream can only be scanned once, and hence if an item
is passed, it can not be revisited, unless it is stored in main memory. Storing
large parts of the stream, however, is not possible because the amount of data
passing by is typically huge.

Different models have already been proposed in literature. The main charac-
teristic is: how must the frequency of an item be measured? There are different
types of models. (1) the sliding window model, (2) the time-fading model, or (3)
the landmark model. In the sliding window model [1, 3, 6, 8, 10], only the most
recent events are used to determine the frequency of an item. In order to avoid
having to count the supports on this window all over again in every time point,
the algorithm in fact updates the frequency of the items based on the deletion
of some transactions and the insertion of other. In the time-fading model, the
past is still considered important, but not as important as the present. This
is modelled by gradually fading away the past [9]. That is, there is, e.g., a

∗The presentation is based on material presented in the ECML/PKDD’06 workshop Inter-
national Workshop on Knowledge Discovery from Data Streams (IWKDDS) [2].
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decay factor d < 1, and a timepoint that lies n timepoints in the past, only con-
tributes dn to the count. In addition to this mechanism, a tilted-time window
can be introduced [4, 5]. In the landmark model, a particular time period is
fixed, from the landmark designating the start of the system up till the current
time [7, 8, 11]. The analysis of the stream is performed for only the part of the
stream between the landmark and the current time instance.

Obviously, the landmark model is not very well suited to find current trends.
The sliding window and the time-decaying models are more suitable; the sliding
window method focusses solely on the present, while the time-decaying model
still takes the past into account, although the effect fades away. For both the
sliding window and the fading window approach, it is hard to determine the right
parameter settings. Especially for the sliding window method, if the window
length is set too high, interesting phenomena might get smoothed out. For
example, suppose that the occurrence of an item a is cyclic; every month, in the
beginning of the month, the frequency of a increases. If the length of the sliding
window, however, is set to 1 month, this phenomenon will never be captured. In
many applications it is not possible to fix a window length or a decay factor that
is most appropriate for every item at every timepoint in an evolving stream.

2 Maximal Frequency Measure

Therefore, we propose a new frequency measure. We assume that on every
timestamp, a new itemset arrives in the stream. We denote a stream as a
sequence of itemsets; e.g., 〈ab bc abc〉 denotes the stream where at timestamp
1, the itemset ab arrives, at timestamp 2, bc, and at timestamp 3, abc. The
maximal frequency measure for an itemset I in a stream S of length t, denoted
mfreq(a, S), is defined as the maximum of the frequency of the itemset over the
time intervals [s, t], with s any timepoint before t.

Example We focus on target item a.
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3 Algorithm

For this frequency measure, we present an incremental algorithm that maintains
a small summary of relevant information of the history of the stream that allows
to produce the current frequency of a specific item in the stream immediately
at any time. That is, when a new itemset arrives, the summary is updated, and
when at a certain point in time, the current frequency of an item is required,
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the result can be obtained instantly from the summary. The structure of the
summary is based on some critical observations about the windows with the
maximal frequency. In short, many points in the stream can never become the
starting point of a maximal window, no matter what the continuation of the
stream will be.

Example In the following stream, the only positions that can ever become
the starting point of a maximal interval for the singleton itemset a are indicated
by vertical bars.

〈|a a a b b b a b b a b a b a b a b b b b |a a b a b b |a〉

The summary will thus consist of some statistics about the few points in
the stream that are still candidate starting points of a maximal window. These
important points in the stream will be called the borders. More details can be
found in [2].

4 Experimental Evaluation

Critical for the usefulness of the technique are the memory requirements of the
summary that needs to be maintained in memory. We show experimentally
that, even though in worst case the summary depends on the length of the
stream, for realistic data distributions its size is extremely small. Obviously, this
property is highly desirable as it allows for an efficient and effective computation
of our new measure. Also note that our approach allows exact information as
compared to many approximations considered in other works. In Figure 1, for
some distributions, the maximal number of borders in synthetically generated
random streams have been given. The number of borders corresponds linearly
to the memory requirements of the algorithm.

5 Summary

In the presentation, a new support measure for itemsets in streams is introduced
and motivated. An algorithm to maintain a small summary based on which the
support can immediately be produced is presented. Experimental evaluation
shows that the memory requirements of this summary are very low.
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Figure 1: Size of the summaries for two items a and b

[3] Demaine E.D., Lopez-Ortiz A. and Munro, J.I.: Frequency Estimation of
Internet Packet Streams with Limited Space. In Proc. of the 10th Annual
European Symposium on Algorithms, pp 348–360. (2002)

[4] Giannella C., Han J., Robertson E. and Liu C.: Mining Frequent Item-
sets Over Arbitrary Time Intervals in Data Streams. In Technical Report
TR587, Indiana University, Bloomington. (2003)

[5] Giannella C., Han J., Pei J., Yan X. and Yu P.S.: Mining Frequent Patterns
In Data Streams at Multiple Time Granularities. In H. Kargupta, A. Joshi,
K. Sivakumar and Y. Yesha (eds), Next Generation Data Mining, pp 191–
212. (2003)

[6] Golab L., DeHaan D.,Demaine E.D., Lopez-Ortiz A. and Munro J.I.: Iden-
tifying Frequent Items in Sliding Windows over On-Line Packet Streams.
In Proc. of the 1st ACM SIGCOMM Internet Measurement Conference, pp
173–178. (2003)

4



[7] Jin R. and Agrawal G.: An Algorithm for In-Core Frequent Itemset Mining
on Streaming Data. In Proc. of the 5th IEEE International Conference on
Data Mining (ICDM), pp 210–217. (2005)

[8] Karp, R. M., Papadimitriou, C. H. and Shenker, S.: A Simple Algorithm
for Finding Frequent Elements in Streams and Bags. In ACM Trans. on
Database Systems 28, pp 51–55. (2003)

[9] Lee, D. and Lee, W.: Finding Maximal Frequent Itemsets over Online Data
Streams Adaptively. In Proc. of the 5th IEEE International Conference on
Data Mining (ICDM), pp 266–273. (2005)

[10] Lin C.-H., Chiu D.-Y., Wu Y.-H. and Chen A.L.P.: Mining Frequent Item-
sets from Data Streams with a Time-Sensitive Sliding Window. In Proc.
SIAM International Conference on Data Mining. (2005)

[11] Yu J.X., Chong Z., Lu H. and Zhou A.: False Positive or False Negative:
Mining Frequent Items from High Speed Transactional Data Streams. In
Proc. of the 30th International Conference on Very Large Databases, pp
204–215. (2004)

5


