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Abstract. Many data mining algorithms make use of the well-known
Inclusion-Exclusion principle. As a consequence, using this principle ef-
ficiently is crucial for the success of all these algorithms. Especially in
the context of condensed representations, such as NDI, and in comput-
ing interesting measures, a quick inclusion-exclusion algorithm can be
crucial for the performance. In this paper, we give an overview of several
algorithms that depend on the inclusion-exclusion principle and propose
an efficient algorithm to use it and evaluate its complexity. The theoret-
ically obtained results are supported by experimental evaluation of the
quick IE technique in isolation, and of an example application.

1 Introduction

The inclusion-exclusion (IE) principle is well known as it is an important method
for many enumeration problems [8]. Also in many data mining applications this
principle is used regularly. Moreover, as is typical in many data mining ap-
plications, when the formula is used, then it is evaluated many times. Indeed,
data mining algorithms typically traverse huge pattern spaces in which hun-
dreds to millions of potential patterns are evaluated. In this paper, we consider
frequent itemsets and give an overview of several methods to efficiently evalu-
ate the Inclusion-Exclusion formulas in order to obtain the supports of itemsets
containing negated items. This leads us to the Quick Inclusion-Exclusion (QIE)
algorithm, that is based on the same principles as the ADTree structure [13],
and of which we show its efficiency in theory as well as in practice.

First, we shortly revisit the IE-principle and how it connects to itemsets and
data mining.

Let A1, . . . , An be n finite sets. The inclusion-exclusion principle is the fol-
lowing equality:
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We can connect the IE principle with frequent set mining as follows. Let
a generalized itemset be a conjunction of items and negations of items. For
example, G = {a, b, c, d} is a generalized itemset; a, b, and d are the positive
items, and c denotes the negation of c. We will often denote a generalized itemset
X ∪ Y , where X is the set of positive items, and Y the set of items that are



negated. For example, for the generalized itemset {a, b, c, d}, X = {a, b, d} and
Y = {c}. A transaction T is said to contain a general itemset G = X ∪ Y if
X ⊆ T and T ∩ Y = ∅. The support of a generalized itemset G in a database D
is the number of transactions of D that contain G.

We say that a general itemset G = X ∪Y is based on itemset I if I = X ∪Y .
From the IE principle [8], we can now derive that for a given general itemset
G = X ∪ Y based on I,

support(G) =
∑

X⊆J⊆I

(−1)|J\X|support(J) . (1)

Indeed; for all y ∈ Y , let Ay denote the set of transactions that contain X ∪{y}.
Then,

⋃

y∈Y Ay denotes the set of transactions that contain X, and at least one
item of Y . Hence, |

⋃

y∈Y Ay| equals support(X)− support(G). This observation
in combination with IE leads to the equation (1). The collection of formulas to
compute the supports of all generalized itemsets based on abcd can be seen in
Figure 1.

Note, if the supports of all strict subsets of I are known, from the support of
one generalized itemset based on I, the support of all other generalized itemsets
can be derived.

In the next section, we explain the uses of the IE principle within several
frequent set mining tasks. Then, we present several algorithms that compute the
supports of all generalized itemsets at once and show that the QIE algorithm is
the most efficient algorithm to solve this problem. Several experiments illustrate
the theoretically obtained results in Section 4 after which Section 5 ends with
conclusions and future work.

2 Multiple Uses of IE

2.1 Support Estimation and bounding

Recently, several techniques have been developed to estimate the support of an
itemset or the confidence of an association rule, based on the given supports
of some sets [10–12, 14, 16]. The motivation for these techniques comes from
the fact that the traditional support-confidence framework is well-suited to the
market-basket problem, but is less appropriate for other types of transactional
datasets. See, e.g., [16] for an extensive argumentation of this claim. Therefore,
other interestingness measures have been developed.

The main idea is that interesting itemsets are ones that are both frequent
(have required support) and have dependencies between the items. For exam-
ple, consider items a and b. Assume that support measures are translated to
probabilities (by dividing absolute support by number of database records). For
example, P (a) is the percentage of records with item a. To determine whether
items a and b are independent (and hence not correlated), we need to check if
the following 4 equations hold. Measures of correlation are based on the degree



support(abcd) = support(∅) − support(a) − support(b) − support(c) − support(d)

+ support(ab) + support(ac) + support(ad)

+ support(bc) + support(bd) + support(cd)

− support(abc) − support(abd) − support(acd) − support(bcd)

+ support(abcd)

support(abcd) = support(a) − support(ab) − support(ac) − support(ad)

+ support(abc) + support(abd) + support(acd) − support(abcd)

support(abcd) = support(b) − support(ab) − support(bc) − support(bd)

+ support(abc) + support(abd) + support(bcd) − support(abcd)

support(abcd) = support(c) − support(ac) − support(bc) − support(cd)

+ support(abc) + support(acd) + support(bcd) − support(abcd)

support(abcd) = support(d) − support(ad) − support(bd) − support(cd)

+ support(abd) + support(acd) + support(bcd) − support(abcd)

support(abcd) = support(ab) − support(abc) − support(abd) + support(abcd)

support(abcd) = support(ac) − support(abc) − support(acd) + support(abcd)

support(abcd) = support(ad) − support(abd) − support(acd) + support(abcd)

support(abcd) = support(bc) − support(abc) − support(bcd) + support(abcd)

support(abcd) = support(bd) − support(abd) − support(bcd) + support(abcd)

support(abcd) = support(cd) − support(acd) − support(bcd) + support(abcd)

support(abcd) = support(abc) − support(abcd)

support(abcd) = support(abd) − support(abcd)

support(abcd) = support(acd) − support(abcd)

support(abcd) = support(bcd) − support(abcd)

support(abcd) = support(abcd)

Fig. 1. The IE formulas for the itemset abcd.

to which these equations are violated.

P (a, b) = P (a)P (b) P (a, b) = P (a)P (b)

P (a, b) = P (a)P (b) P (a, b) = P (a)P (b)

Observe that standard frequent itemset mining algorithms (e.g., Apriori) only
provide information needed to check the first of these equations. However, all is
not lost. Given P (a), P (b), and P (a, b), we can derive exact values for P (a, b),
P (a, b), and P (a, b) by evaluating the Inclusion-Exclusion formulas for these
terms without taking any additional counts.

The following four approaches are examples of similar measures, that also
require the supports of itemsets with negations, and hence for which a quick
inclusion-exclusion algorithm is useful:



– The dependency estimate of Silverstein et al., based on the χ2 test [16].
– The dependence value of Meo, based on maximal entropy [12].
– The non-derivable itemsets (NDIs), based on tight support bounding [6].
– The support quota of Savinov [15], combining the dependency values of [12]

and the tight support bounding of [6].

In this paper we will show a method to compute the IE sums in time O(n2n).
This exponential cost may seem unrealistically high for real applications. In re-
ality, however, in the applications we describe, the IE sums need to be computed
mostly for relatively small itemsets. For an empirical proof of the feasibility of
computing IE sums, we refer to the experimental section, where it is shown that
for the computation of NDIs, the exponential cost is reasonable.

We now discuss the four approaches in more detail.

Dependency Estimate In [16], a χ2-test is used to test the (in)dependence
of items in an itemset. An itemset is only considered interesting if the items
are dependent at a given significance level. The test of dependence is as follows.
First, a contingency table for the itemset is constructed. This contingency table
contains an entry for every combination of occurence/absence of the items in
the itemset. Hence, the cells in the contingency table are exactly the supports
of every generalized itemset based on the set. This contingency table is then
compared to the estimates for the cells under the assumption of statistical inde-
pendence. For the cell holding the support of X ∪Y , this independence estimate
is

E(X ∪ Y ) := |D| ·
∏

x∈X

support({x})

|D|
·

∏

y∈Y

|D| − support({y})

|D|
.

Then, the χ2-score is used to quantify the difference between the observed counts
and the estimated counts. This degree of independence for a set I is:

χ2(I) :=
∑

X∪Y based on I

(support(X ∪ Y ) − E(X ∪ Y ))2

E(X ∪ Y )
.

The set is then called dependent at significance level α if χ2(I) exceeds the cut-off
value χ2

α.
In [16], an algorithm to find all dependent itemsets that also satisfy a support

constraint is given. In this algorithm, the contingency tables are constructed by
scanning the complete database. Because scanning the transaction database for
every candidate separately can be very costly, in [16], the contingency tables of
all candidates at the same level are constructed in one pass over the database.

The construction of the contingency tables in the algorithm of [16], however,
has two big disadvantages: first, scanning the database can be very costly, espe-
cially for large datasets. Second: the contingency tables grow exponentially with
the size of the itemset. Therefore, maintaining all contingency tables in memory
simultaneously results in gigantic memory requirements. Therefore, we propose



the use of the inclusion-exclusion principle for the construction of the contin-
gency tables instead. Indeed, the cells in the contingency table are exactly the
supports of the generalized itemsets, and, as was shown in the introduction, for
a given set, the support of all its generalized itemsets based can be computed,
based solely on the supports of all its subsets.

Notice that this use of the inclusion-exclusion principle goes far beyond the
algorithm of [16] alone; every algorithm using contingency tables can benefit
from it, and many statistical measures use contingency tables.

Dependency Values In [12], Meo addresses the following problem with the
estimate of [16]. A major drawback of the framework proposed in [16] is that in
the estimation of the support of the contingency table entries, only the supports
of the singleton itemsets are used. In this way, it is possible (and even often the
case) that the estimated supports are inconsistent with the supports of itemsets
of higher length. Meo addresses this problem by adopting a maximal entropy
model to estimate the support of an itemset. Let I be an itemset for which we
want to estimate the support, based on the supports of all its strict subsets. First,
the notion of the entropy of a transaction database is defined. In general, entropy
is defined as a measure on probability distributions. Let Ω = {ω1, . . . , ωm} be a
set of possible outcomes of an experiment. Let X be a probability distribution
that assigns probability pi to ωi, for i = 1 . . . m. The entropy of X is then defined
as

∑n

i=1
pi · ln(pi).

To define the entropy of a transaction database, it suffices to regard the
database as a probability distribution. When we are interested in the itemset I,
we can view the database as a probability structure assigning probabilities to the
generalized itemsets based on I. That is, the different generalized itemsets are
the “events”, and their probability is their support divided by the total number
of transactions in the database. From this viewpoint, the entropy of the database
when restricted to the itemset I, denoted EI(D), is defined as

∑

X∪Y based on I

support(X ∪ Y )

|D|
· ln

(

support(X ∪ Y )

|D|

)

.

Remember from Section 1, that if we know the supports of all strict subsets
of I, then from the support of I, the support of all generalized itemsets based
on I can be derived. The maximal entropy estimate for the support of I now
is the one that maximizes the entropy EI(D). In [12], based on the maximal
entropy estimate, the notion of Dependence Values of an itemset is defined as
the difference of this estimated support and the actual support of the itemset. For
the exact details on the computation, we refer to [12], but for here it suffices that
again all IE formulas need to be computed. In [12], these IE sums are calculated
in isolation. This will correspond to our brute force evaluation method which we
improve upon significantly in this paper. As the experiments will show, the gain
of the quick inclusion-exclusion is large, which implies that the application of
our quick IE-computation improves the performance of determining dependence
values significantly.



2.2 Non-Derivable Itemsets

In [6], tight bounds for an itemset are given for the case in which the supports
of all its subsets are known. That is, from the supports of the strict subsets of
I, a lower bound l and an upper bound u are calculated, such that the support
of I must be in the interval [l, u]. A set is considered uninteresting if its lower
bound equals its upper bound, because this equality implies that the support of
the itemset is completely determined by the supports of its subsets. Such a set is
called a derivable itemset. In [6], an algorithm is given to find all non-derivable
itemsets.

The bounds in [6] are based on the inclusion-exclusion principle. Recall the
equality

support(X ∪ Y ) =
∑

X⊆J⊆I

(−1)|J\X|support(J) .

Since support(X ∪ Y ) is always positive, we get

0 ≤
∑

X⊆J⊆I

(−1)|J\X|support(J) . (2)

In [6], this observation was used to calculate lower and upper bounds on the
support of an itemset I, by isolating support(I) in (2). For each set I, let lI (uI)
denote the lower (upper) bound we can derive using these deduction rules. That
is,

lI = max{−
∑

X⊆J⊂I

(−1)|J\X|support(J) | X ⊆ I, |I \ X| odd},

uI = min{
∑

X⊆J⊂I

(−1)|J\X|support(J) | X ⊆ I, |I \ X| even}.

Notice that these sums only differ little from the IE-sums we are optimizing.
In fact, the sums coincide when we set support(I) equal to 0. Therefore, our
quick inclusion-exclusion technique directly leads to an efficient procedure for
computation of bounds on the support of an itemset.

Notice that for the bounds in [6], the supports of all subsets of I must be
known. This is often the case (e.g. in levelwise algorithms), but not always.
In these cases, approximate inclusion-exclusion techniques can be used to find
bounds on the support of an itemset. In [7], e.g., bounds on the support of an
itemset are given when the support of all subsets up to a certain size only are
known. These bounds are based on the so-called Bonferoni inequalities, which
are an extension of the inclusion-exclusion principle.

Support Quotas In [15], Savinov proposes the use of support quotas to improve
the performance of mining the dependence rules of [12]. The support quota of
an itemset is defined as the size of the bounding interval for its support as in
[6]. Let [l, u] be the bounds on the support of I. The support of I must always
be in this interval. If the estimate e(I) is consistent with the supports of the



subsets of I, there must exist a database that is consistent with the supports
of all subsets of I, and with support(I) = e(I). For example, the maximum
entropy estimate of [12] is in this case. Therefore, the difference between e(I)
and the actual support of I can maximally be u − l. If u − l is smaller than the
minimal dependence value, the difference between the estimate and the actual
support will be smaller than this threshold as well and hence can be pruned.
Moreover, since the interval width decreases when going from sub- to superset,
all supersets of I can be pruned as well. This is a very interesting situation, as the
dependence value is non-monotonic and thus not allows for pruning supersets.
By using support bounding, however, an upper bound on the dependence values
can be found that is monotonic. Even though Savinov’s technique was introduced
specifically for the dependence rules of [12], it can be extended to improve every
estimate that is consistent with given supports, leading to yet another important
application of quick IE.

2.3 Condensed Representation

The use of the quick inclusion-exclusion technique goes beyond advanced inter-
esting measures for itemsets. In [11], for example, Mannila et al consider the
collection of frequent sets as a condensed representation that allows to speed up
support counts of arbitrary Boolean expressions over the items. In this context,
the inclusion-exclusion principle can be used as a mean to estimate the support
of arbitrary Boolean formulas based on the support of the frequent itemsets
alone. Our quick IE method can here be used to quickly find the support of all
conjunctive Boolean formulas with negations.

Also when we are only interested in the frequent itemsets, condensed repre-
sentation are very useful, since the collection of all frequent itemsets can already
be far too large to store. In the literature, many different condensed represen-
tations have been studied. In [5], the free sets [3], disjunction-free sets [4], gen-
eralized disjunction-free sets [9], and the non-derivable sets [6] are all shown
to be based on the same support bounding technique which is based on the
inclusion-exclusion formulas. For the exact details of this connection we refer to
[5]. Because of this connection, improving the efficiency of the inclusion-exclusion
computation results in performance gains when constructing one of these con-
densed representations.

3 QIE: The Algorithm

We first start with a formal problem definition.

Definition 1. Let I be an itemset. Suppose that of every subset of I its support

has en given. The IE problem is to compute for every subset X of I, the sum

∑

X⊆J⊆I

(−1)|J\X|support(J) .



Require: I ⊆ I, support(J) for all J ⊆ I
Ensure: support(X ∪ Y ) for all X∪̇Y = I
1: for all X ⊆ I do

2: support(X ∪ Y ) := 0
3: for all J ⊇ X do

4: find support(J)
5: support(X∪Y )+ = (−1)|J\X|support(J)
6: end for

7: end for

Fig. 2. BFIE: Brute Force IE.

Obviously, efficiently computing IE is crucial for the success of all previously
discussed methods. Nevertheless, for a given itemset I, there exist 2|I| rules, and
every such rule, with I = X∪Y , consist of 2|Y | terms, resulting in a total number
of terms equal to

∑

X⊆I

2|I\X| =

|I|
∑

i=0

(

|I|

i

)

2i = 3|I| .

In what follows, we present several techniques to evaluate these rules effi-
ciently. To compare their costs, we assume all itemsets are stored in a trie-like
data structure [2]. Finding the support of a single itemset of size k in such a trie
requires exactly k lookup operations. The cost model we use, assigns a cost of 1
to every lookup operation, and thus a cost of k for the retrieval of the support
of an itemset of size k. In theory, however, this cost is in worst case as high as
log(|I|), but in practice, and with the use of advanced indexing techniques such
as hash tables, the cost of 1 for every lookup operation is realistic. Notice that
we could also hash the itemsets directly, and thus have a cost of O(1) per item-

set that needs to be looked up. Nevertheless, the computation of any reasonable
hash-key will be linear in the size of the set. For one computation this linearity
does not matter and can be omitted from the complexity analysis. In our case,
however, we need to incorporate the fact that this computation needs to be done
for many itemsets.

3.1 Brute Force IE

A brute force algorithm would simply evaluate all rules separately and fetch all
supports one at a time, as shown in Fig. 2.

The total cost of this algorithm is captured in the following Lemma.

Lemma 1. For a given itemset I, with |I| = n, computing the supports of all

generalized itemsets X ∪ Y , with X ∪ Y = I, using the brute force algorithm,

comes down to a cost of 2n3n−1.

Proof. Computing the support of X ∪ Y requires the retrieval of
(

|Y |
0

)

sets of

size |X| = k,
(

|Y |
1

)

sets of size |X| + 1, . . . ,
(

|Y |
|Y |

)

sets of size |X ∪ Y | = |I| = n,



Require: Root node n, X ∪ Y
Ensure: support(X ∪ Y )
1: if X ∪ Y is empty then

2: return n.support;
3: end if

4: {Let i be the first item in X ∪ Y }
5: if i in X then

6: X := X \ {i};
7: return CIE(n → i, X ∪ Y );
8: else

9: Y := Y \ {i};
10: return CIE(n, X ∪ Y ) − CIE(n → i, X ∪ Y );
11: end if

Fig. 3. CIE: Combined IE for a single support(X ∪ Y ).

which amounts to

n−k
∑

i=0

(

n − k

i

)

(i + k) = (n + k)2n−k−1 .

Thus, evaluating the supports for all X ∪ Y comes down to

n
∑

k=0

(

n

k

)

(n + k)2n−k−1 = 2n3n−1 .

3.2 Combined IE

Instead of retrieving the support of all supersets of X separately, this can be
done in a single large retrieval operation combined with the computation of
the support of X ∪ Y . Indeed, the items in X occur in all itemsets we retrieve,
while the items in Y are “optional”. This observation is reflected in the recursive
procedure illustrated in Figure 3.

Initially, the procedure starts in the root node, and scans over the items in X∪
Y . If the current item is in X, then it is found among the children of the current
node and the procedure recursively continues from this node for the remaining
items. If the current item is in Y , then the computation is split into two paths;
on one path, the item is ignored, and the procedure recursively continues from
the current node for the remaining items; on the other path, the item is found
among the children of the current node and the procedure recursively continues
from this node for the remaining items. In this way, the different computation
paths end up in exactly the supersets of X, the supports are returned and,
depending on their cardinality, added or subtracted. In Figure 4, this procedure
is illustrated for the set abcd. The arrows indicate the recursion, the encircled
nodes the itemsets that are summed.



{}

a b c d
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Fig. 4. Example trace of combined IE algorithm for a single abcd.

Lemma 2. For a given itemset I, with |I| = n, computing the supports of all

generalized itemsets X ∪ Y , with X ∪ Y = I, using the combined IE algorithm,

comes down to a cost of 2(3n − 2n).

Proof. The total cost of computing the supports of all generalized itemsets con-
sists of the total number of visits to non-root nodes in the itemset trie.

Consider a node in the trie associated with itemset J . This node is visited
in the computation of the support for all generalized itemset X ∪ Y , such that
there is a superset of X that is in the trie below the node for J . Because the
trie below J contains all sets with J as prefix, this means that there must be
a superset of X such that J is a prefix of this superset. Let j be the last item
in the set J . The trie below J contains the supports of all sets J ∪ J ′ with J ′

a subset of {i ∈ I | i > j}. Hence, there exists a superset of X that is below
J in the itemset trie, if and only if X is a subset of J ∪ {i ∈ I | i > j}. Let
m = |{i ∈ I | i < j, i 6∈ J}| be the number of so-called “missing items” in J .
The number of times J is visited during the combined IE algorithm depends on
this number of missing items m, and is 2n−m.

To make the total sum of visits, we still need to determine the number of
nodes with m missing items. This number equals

(

n

m+1

)

. Indeed, consider an
itemset with m missing items. This itemset is completely characterized by the
list of the m missing items, and its last item. Therefore, the number of itemsets
with m missing items is exactly the number of combinations of m + 1 out of n.

Combining these two results, the total number of visits to nodes in the trie
can be obtained:

n−1
∑

m=0

(

n

m + 1

)

2n−m = 2(3n − 2n) .



Require: I ⊆ I, support(J) for all J ⊆ I
Ensure: support(X ∪ Y ) for all X∪̇Y = I
1: for all X ⊆ I do

2: A[Xb] := support(X);
3: end for

4: for i := 1 to 2|I| do

5: {Let X be the itemset for which Xb = i}
6: for all J ⊆ I, such that J ⊃ X do

7: A[i] := A[i] + (−1)|J\X|A[Jb];
8: end for

9: end for

Fig. 5. NIE: Naive IE algorithm using direct access to the itemset supports.

3.3 Direct Access

Although the previous method already combines the retrieval of the supports of
several itemsets in a single scan through the itemset trie, this still needs to be
done for every possible subset of I. Fortunately, it is also possible to collect the
support of all subsets of I once, store it in a specialized storage structure, and
access this structure for every set X. Preferably, the specialized structure does
not introduce too much overhead, and allows for fast access to the supports of
the supersets of a set X. These requirements can be met with a simple linear
array, and an indexing pattern based on the bit-pattern of the itemsets. From
now on, we assume that the items of I are ordered.

To store the supports of the subsets of an itemset I, we create an array of
size 2|I|, denoted by A, and the ith entry of A is denoted by A[i]. Then, the
bitpattern of an itemset X ⊆ I, denoted by Xb, is simply the sequence x1 . . . x|I|,
where xj = 1 if ij ∈ X, and xj = 0 otherwise. The index of X is the number
represented by the bitpattern of X. Hence, this index can be used to directly
access the entry in A storing the support of X.

The array structure, and the bitpattern access method have several interest-
ing properties.

1. Enumerating all subsets of I comes down to a for loop from 0 to 2|I|.
2. The indices of the supersets of a set X can be enumerated by switching some

of the 0-bits to 1 in the bitpattern of X.
3. The order in which the subsets are stored is also known as the reverse pre-

order. This order has the interesting property that, given two sets X,X ′,
such that X ⊆ X ′ ⊆ I, the index of X will be smaller than the index of X ′.
Therefore, we compute the support of X ∪Y in ascending order of the index
of X. After that, we can simply replace the entry containing the support of
X with the support of X∪Y as we do not need its support anymore anyway.

Given this array containing the supports of all subsets of I, we automatically
obtain the naive algorithm that sums for each X ⊂ I, the supports of all super-
sets of X. The exact algorithm is shown in Fig. 5 and illustrated in Figure 6.
The arrows in the figure represent all necessary additions or subtractions.
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{} c b bc a ac ab abc

Fig. 6. Illustration of the naive IE algorithm using direct access to the itemset supports,
for the generalized itemsets based on abc.

The first three lines store the support of each subset of I in the array. Then,
in line 4, a for-loop traverses each subset X in ascending order of its index. In
the nested for-loop, all supports of all supersets of X are added (subtracted) to
the support of X, resulting in the support of X ∪ I \ X, stored at index Xb of
the array.

Lemma 3. For a given itemset I, with |I| = n, computing the supports of all

generalized itemsets X ∪ Y , with X∪̇Y = I, using the naive IE algorithm with

direct access to the itemset supports, comes down to a cost of 3n.

Proof. Retrieving the supports of all subsets of I has a cost of 2|I|. For each
generalized itemset X∪Y , the IE formulas consist of 2|Y |−1 operations, resulting
in a total of exactly 3|I| − 2|I| operations over all generalized itemsets. Hence,
the total cost equals 2|I| + 3|I| − 2|I| = 3|I|.

Until now, we have mainly concentrated on optimizing the number of costly
retrievals in the itemset trie by introducing an array for the itemset supports with
an efficient indexing structure. In this way, the number of retrieval operations
could be lowered from 3n to 2n. The number of additions, however, remains
3n − 2n. Even though the cost of one addition is negligible compared to the cost
of one retrieval operation, the cost of 3n−2n additions quickly grows far beyond
the cost of 2n retrieval operations.

3.4 Quick IE

The retrieval of the supports of all subsets is not the only operation that can be
shared among the different inclusion-exclusion computations. Indeed, many of
the inclusion- exclusion sums share a considerable number of terms. Therefore, by
sharing part of the computation of the sums, a considerable number of additions
can be saved. For example, consider the sums for abcd and abcd:

abcd = ab − abc − abd + abcd

abcd = a − ab − ac − ad + abc + abd + acd − abcd



Require: I ⊆ I, support(J) for all J ⊆ I
Ensure: support(X ∪ Y ) for all X∪̇Y = I
1: for all X ⊆ I do

2: A[Xb] := support(X);
3: end for

4: for l := 2;l < 2|I|;l := 2l do

5: for i := 1;i < 2|I|; i+ = l do

6: for j := 0 to l − 1 do

7: A[i + j] := A[i + j] − A[i + l/2 + j];
8: end for

9: end for

10: end for

Fig. 7. QIE: Quick IE algorithm.

Hence, if we first compute support(abcd), and then use

abcd = acd − abcd = a − ac − ad + acd − abcd

we save 3 additions. In general, for a generalized itemset G, and an item a not
in G, the following equality holds:

support(aG) = support(G) − support(aG) .

This fact can now be exploited in a systematic manner as in Fig. 7.
Again, the algorithm starts by filling an array with the supports of all subsets

of I. In the end, the entry for X in the array will contain the support of X ∪ Y ,
with X∪̇Y = I. To get to this support, the entries of A are iteratively updated.
Let I = {i1, . . . , in}. After the jth iteration, the entry for X will contain the
support of the generalized set X ∪ {in−j+1, . . . , in} \ X. In other words, in the
jth iteration, the entries for all X that do not contain item in−j+1 are updated
by adding in−j+1 to it, and updating its support accordingly.

For example, let I be the itemset {a, b, c}. Before the procedure starts, array
A contains the following supports:

000 001 010 011 100 101 110 111
{} c b bc a ac ab abc

In the first iteration, item c is handled. This means that in this iterations, the
entries of all sets X that do not contain c are updated to contain the support of
X ∪ c. Hence, after the first iteration, the array contains the following supports:

000 001 010 011 100 101 110 111
c c bc bc ac ac abc abc

In the second iteration, item b is handled. Thus, after the second iteration, the
array contains the following supports:

000 001 010 011 100 101 110 111

bc bc bc bc abc abc abc abc



000 001 010 011 100 101 110 111
{} c b bc a ac ab abc

Fig. 8. Visualization of the QIE algorithm.

In the third and last iteration, item a is handled, giving the final array:

000 001 010 011 100 101 110 111

abc abc abc abc abc abc abc abc

Lemma 4. For a given itemset I, with |I| = n, computing the supports of all

generalized itemsets X∪Y , with X∪̇Y = I, using the Quick IE algorithm, comes

down to a cost of 2n + n2n−1.

Proof. The first term comes from filling the array with all subsets of I. Then,
for every item i ∈ I, we update all itemsets not containing i, i.e. exactly 2n−1.

Notice that the principle used in QIE, is also used in ADTrees [13], in the
more general context of relations with categorical attributes, in order to speed
up the computation of contingency tables. An ADTree is a datastructure that
stored the counts of some queries over the relation. If now a transaction database
is considered as a relation with binary attributes, and the construction of the
ADTree is slightly modified such that only counts of itemsets are stored, the
computation of a contingency table in ADTree, and the computation of the
supports of all general itemsets by QIE will become very similar.

3.5 Summary

The memory and time requirements of the different methods discussed in this
section are summarized in the following table. n denotes the number of items in
an itemset I, for which the supports of all generalized itemsets based on it are
computed. For the space requirement, we only report the memory required for
the computation, not the input-, or the output size. This choice is motivated by
the fact that the frequent itemsets and their supports can be stored in secondary
storage, and the output can either directly be filtered for patterns meeting a sup-
port threshold, or be written to a database. Hence, the space requirement is the
amount of main memory needed to compute the inclusion-exclusion. Notice also
that reporting the total memory requirement instead would be far less informa-
tive, as it would yield a lower bound of O(2n) for all methods.
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Fig. 9. Time needed to compute the generalized itemsets.

Method Space Time
Brute force constant 2n3n−1 = O(n3n)
Combined, no direct access constant 2(3n − 2n) = O(3n)
Combined, direct access O(2n) 3n = O(3n)
QIE O(2n) 2n + n2n−1 = O(n2n)

From this table we can conclude that, if the itemset is small, the QIE method is
clearly the best. In the case, however, that the itemsets are stored in secondary
storage, n is large, and memory is limited, the combined method without direct
access is preferable.

4 Experiments

We implemented the well known Apriori algorithm [1] and adapted it to in-
corporate all proposed techniques for computing the supports of all generalized
itemsets. The experiments were ran on a 1.2 GHz Pentium IV using 1GB of
memory. More specifically, for every candidate itemset, we recorded the amount
of time needed to compute the supports of all generalized itemsets. The results
of this experiment are shown in Figure 9. In this figure, the average running time
per itemset length has been given. The dataset we used for this experiment was
the BMS-Webview-1 dataset donated by Kohavi et al. [17]. We experimented on
several datasets as well, but only report on BMS-Webview-1, as these figures are
independent of the dataset used. As expected, the algorithms behave as shown
in theory. (Note the logarithmic y axes.)

For further evaluation, we also implemented the presented techniques in
our NDI implementation to see what the effect would be in a real application.
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Fig. 10. Peformance improvement of the NDI algorithm for BMS-Webview-1.

We performed our experimented on the BMS-Webview-1 and BMS-Webview-2
datasets [17], and the results turned out to be very nice. The results are shown
in Figure 10 for BMS-Webview-1 and in Figure 11 for BMS-Webview-2. We only
show the results for the NIE and QIE algorithm as these are the two fastest.

Although Non-Derivable Itemsets are shown to be small in general [6], and
the computation of the IE formulas in the candidate generation phase is only a
small part of the total cost of the algorithm, we observe remarkable speedups
showing the applicability for the proposed QIE algorithm. For example, in BMS-
Webview-1, for the lowest threshold, a speedup of more that 200 seconds was
obtained.

5 Conclusion

We presented an overview of algorithms to compute the supports of so called
generalized itemsets, i.e. itemsets in which items are allowed to be negated. We
explained how this can be done without going back to the database, using the
principle of Inclusion-Exclusion. We showed that many data mining applications
could benefit from this principle in case an efficient algorithm existed. The QIE
algorithm is theoretically and experimentally shown to be extremely efficient
compared to several other techniques.
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