
Deducing Bounds on the Frequency of Itemsets

Toon Calders?

University of Antwerp
Universiteitsplein 1, B-2610 Wilrijk, Belgium

calders@uia.ua.ac.be

Abstract. Mining Frequent Itemsets is the core operation of many data
mining algorithms. This operation however, is very data intensive and
sometimes produces a prohibitively large output. In this paper we give
a complete set of rules for deducing tight bounds on the frequency of an
itemset if the frequencies of all its subsets are known. These rules allow
for reducing data access and providing a more compact output. Based
on the derived bounds [l, u] of a candidate itemset C, we can decide
not to access the database to count its frequency if l is larger than the
support threshold (C will certainly be frequent), or if u is smaller than
the threshold (C will certainly fail the frequency test). In this way, the
number of runs through the database and the number of sets to count can
be reduced significantly. We can also use the rules to reduce the size of
an adequate representation of the collection of frequent sets; all itemset
frequencies that can be deduced do not need to be stored explicitly. To
assess the usability in practice, we implemented the deduction rules and
we present experiments on a real-life dataset.

1 Introduction

Mining frequent itemsets forms a core operation in many data mining problems.
Since their introduction [1], many algorithms have been proposed to find frequent
itemsets, especially in the context of association rule mining [1, 2, 11].

The frequent itemset problem is stated as follows. Assume we have a finite
set of items I. A transaction is a subset of I, together with a unique identifier.
A transaction database is a finite set of transactions. A subset of I is called an
itemset. We say that an itemset K is s-frequent in a transaction database T if
the fraction of the transactions in T that contain all items of K is at least s.
The frequent itemset problem is, given a support threshold s and a transaction
database T , find all s-frequent itemsets.

All algorithms for mining frequent itemsets rely heavily on the following
monotonicity principle [15]:

Let K ⊆ L be two itemsets. In every transaction database T , the fre-
quency of L will be at most as high as the frequency of K.

? Research Assistant of the Fund for Scientific Research - Flanders (FWO-
Vlaanderen).

This simple rule of deduction has successfully been used many times. Because
of the success of this simple rule, much attention went into efficient counting
schemes for the generated candidates. The best example is the well-known Apri-
ori-algorithm. Apriori goes through the itemset-lattice level by level; in the i-th
loop, itemsets of cardinality i are counted. Because of the monotonicity principle,
all itemsets in loop i that have at least one subset that failed the support-test
can be pruned ; we know a priori that they will be infrequent. Thus, based on the
frequency of one subset that is below the frequency threshold, we can deduce,
using the monotonicity rule, that also the frequency of the candidate will be
below the threshold. In this paper we present some additional deduction rules
that calculate lower and upper bounds on the frequency of a candidate, and as
such continues work done in [7]. Based on the frequencies of all its subsets, the
rules compute bounds [l, u] on the frequency of an itemset. The rules calculate
the best possible bounds; i.e., if bounds [l, u] are calculated, then both l and u
are possible as frequency of the itemset, and thus, the interval cannot be made
more tight.

Based on these bounds we can avoid counting too many candidates, or decide
to count more candidates in one run over the database. Also, as the experiments
will show, the intervals decrease in width very fast. Therefore, it is possible to
generate a summary of the frequent itemsets that only contains the non-derivable
sets. The collection of non-derivable sets forms a concise representation [14] of
the frequent sets. Other concise representations in the literature include free
sets [4], closed sets [16, 3, 17], and disjunction-free sets [5].

There are also some analogs with interactive association rule mining. In [8,
9], the authors develop a framework that allows to reuse results of previous data
mining queries. For example, parts of the answer to the query asking for the
supports of all itemsets containing a certain item A can be reused to answer
the query that asks for the frequency of all itemsets that do not contain B.
The deduction rules introduced here can be used orthogonally to this approach.
Based on previous results, bounds on the frequency of new, not yet counted
itemsets can be calculated.

Another application of deduction rules is developed in [10]. Based on the
observation that highly frequent items tend to blow up the output of a data
mining query by an exponential factor, the authors develop a technique to leave
out these highly frequent items, and to reintroduce them after the mining phase
by using a deduction rule, the multiplicative rule. A special form of this multi-
plicative rule will also appear in our framework.

In Section 2 we give an example showing that the monotonicity rule is not
complete for deduction of frequencies. This example also gives a sketch of the
general approach. In Section 3 we will give some important definitions. In Section
4, the complete set of deduction rules is given. In Section 5 we present the results
of experiments with the deduction rules and Section 6 concludes the paper.

2 Motivating Example

Apriori does not prune perfectly. Consider the following example1:

freq(A,R) = freq(B,R) = freq(C,R) = 2
3

freq(AB,R) = freq(AC,R) = freq(BC, R) = 1
3

(1)

Suppose we are running the Apriori-algorithm with the minimal support
threshold set to 1

3 . The algorithm will start with counting the frequencies of
the singleton-itemsets L1 = {{A}, {B}, {C}}. Since they are all frequent, Apriori
will consider in its second loop the candidates L2 = {{A,B}, {A,C}, {B,C}}.
Again all candidates are frequent, and thus, Apriori will count L3 = {{A,B, C}}
in its third loop. However, the following simple observation teaches us that from
the frequencies counted for the singletons and the pairs, we can derive that
{A,B,C} cannot be frequent.

We can encode this situation as a linear programming instance. This rep-
resentation is also used in [7, 6]. Let a denote the fraction of transactions t in
the database having t.Items = {A}, b is the fraction of transactions having
t.Items = {B}, . . . , ab is the fraction having t.Items = {A,B}, . . . , and abc
is the fraction of transactions t having t.Items = {A,B, C}. Variable z is the
fraction of transactions having the empty set as set of items. For every relation
satisfying the frequencies in (1), the following holds:

a + ab + ac + abc = 2
3 (A)

b + ab + bc + abc = 2
3 (B)

c + ac + bc + abc = 2
3 (C)

ac + abc = 1
3 (AC)

ab + abc = 1
3 (AB)

bc + abc = 1
3 (BC)

a + b + c + ab + ac + bc + abc + z = 1
a, b, c, ac, bc, ab, z, abc ≥ 0

(2)

From this system we derive:

a + ab = 1
3 (A−AC)

a + ac = 1
3 (A−AB)

b + ab = 1
3 (B −BC)

b + ac = 1
3 (B −AB)

c + ac = 1
3 (C −BC)

c + bc = 1
3 (C −AC)

(3)

The solution of system (3) is a = b = c = k, ab = ac = bc = 1
3 − k with k a

parameter (6 vars, rank 5, thus 1 parameter). Because a + b + c + ab + ac +
bc + abc + z = 1, we derive z + abc ≤ 0. Since z ≥ 0 and abc ≥ 0, it holds that
abc = 0. Therefore, freq(ABC, R) = 0, and we know a priori that ABC cannot
be frequent. Nevertheless, Apriori does not prune ABC. This reasoning shows
that pruning still can be improved.
1 freq(K, R) denotes the frequency of itemset K in the database R. For precise defi-

nitions we refer to Section 3

3 Definitions

In this section we define the frequent itemset problem and the implication of fre-
quencies. We also introduce the notion of a K-fraction in a transaction database.
This notion will allow us to make similar derivations as in the last example, but
in a more general setting.

3.1 Frequent Itemset Problem

Let I, the set of items, be a finite set.

- A transaction t over I is defined as a subset of I, denoted t.Items, together
with an identifier , denoted t.ID.

- A finite set of transactions over I is called a transaction database over I.
We also require that no two different transactions in T have the same ID.
Notice that due to the identifiers there can be two different transactions in
the database with the same set of items.

- A subset of I is called an itemset . We will often denote an itemset K by the
list of its elements; i.e., {A,B,C} is denoted by ABC.

- The frequency of an itemset K over I in a transaction database T over I,
denoted freq(K, T), is defined as

freq(K, T) :=
|{t ∈ T | K ⊆ t.Items}|

|T |
.

- A Frequent Itemset Problem is a triple (I, T, s), with I a finite set of items,
T a transaction database over I, and 0 ≤ s ≤ 1 a rational number. The
solution of the problem (I, T, s) is

FreqSetI(T, s) := {K ⊆ I | freq(K, T) ≥ s} .

Example 1. Consider the following transaction database T over {A,B,C, D}.

T =

TID items
1 A,B,C
2 A,B,D
3 A,D
4 A,D

The frequency of the itemset {A,D} in T is 3
4 because

3 transactions out of 4 contain both A and D; only the
transaction with transaction identifier (TID) 1 does not
contain D.

3.2 Fraction

In the rest of the paper the following definition will be very important.

- Let T be a transaction database and L be a subset of I. We define the
L-fraction of T , denoted tL(T) as

|{t ∈ T | t.Items = L}|
T

.

Hence, the L-fraction of T is the fraction of transactions having L as set of
items. If T is clear from the context, we will write tL.

These definitions allow us to restate the frequency of an itemset K in terms of
the different L-fractions in the transaction database.

Lemma 1. Let T be a transaction database and K be an itemset over I. Then
the following holds.

freq(K, T) =
∑

K⊆L⊆I

tL .

Thus, the frequencies of the itemsets only depend on the different L-fractions tL,
with L ⊆ I.

Proof.

freq(K, T) =
|{t ∈ T | K ⊆ t.Items}|

|T |
=

∣∣∣⋃K⊆L{t ∈ T | t.Items = L}
∣∣∣

|T |

=

∑
K⊆L⊆I |{t ∈ T | t.Items = L}|

|T |
=

∑
K⊆L⊆I

|{t ∈ T | t.Items = L}|
|T |

=
∑

K⊆L⊆I

tL

Example 2. In the transaction database T in Example 1, the AB-fraction tAB

is 0, tABC = 1
4 , tABD = 1

4 , tABCD = 0. freq(AB, T) = tAB + tABC + tABD +
tABCD = 2

4 .

In the remainder of the paper, the following lemma will be important since
it will allow us to restate frequency problems as linear inequality problems. The
existence of a transaction database fulfilling certain conditions will be equivalent
to the existence of a solution of a linear system of inequalities.

Lemma 2. Let I be a set of items, and for each L ⊆ I, let vL be a rational
number. There exists a transaction database T with ∀L ⊆ I : tL(T) = vL iff
{xL = vL | L ⊆ I} is a solution of the following system of inequalities:{

xL ≥ 0 ∀L ⊆ I∑
L⊆I xL = 1

Proof. Only if vL ≥ 0 cannot be violated since tL(T) must always be positive.
By definition,

∑
L⊆I tL(T) =

∑
L⊆I

|{t∈T | t.Items=L}|
T = |T |

|T | = 1.
If Suppose {xL = vL | ∀L ⊆ I} is a solution of the system. Let n be

the least common multiple of the nominators of the different vL’s. Construct
the transaction database T as follows: for each L add n.vL transactions t with
t.Items = L. It is easy to see this construction provides us with a transaction
database with the desired fractions.

Corollary 1. Let I be a set of items, L1, . . . , Ln ⊆ I, and f1, . . . , fn rational
numbers. There exists a transaction database T over I such that for all 1 ≤ i ≤ n
it holds that freq(Li, T) = fi iff the following system of inequalities over variables
{tL | L ⊆ I} has a solution:

tL ≥ 0 ∀L ⊆ I∑
L⊆I tL = 1∑
I⊇tLi

= fi 1 ≤ i ≤ n

Example 3. There exists a transaction database T with freq(A, T) = 2
3 ,freq(B, T)

= 2
3 , and freq(AB, T) = 0 iff the following system of inequalities has a solution:

t{} ≥ 0, tA ≥ 0, tB ≥ 0, tAB ≥ 0
t{} + tA + tB + tAB = 1
tA + tAB = 2

3
tB + tAB = 2

3
tAB = 0

From tA + tAB = 2
3 , tB + tAB = 2

3 , and tAB = 0, we derive that tA = tB = 2
3 .

Therefore, because t{} ≥ 0, it follows that t{}+tA+tB +tAB > 1, and the system
has no solution. Hence, we conclude that there does not exist a transaction
database with freq(A, T) = 2

3 , freq(B, T) = 2
3 , and freq(AB, T) = 0.

3.3 Implication

We now define implication of frequencies. Let I be a set of items.

- A Frequency Expression over I is an expression freq(K) = fK , with K an
itemset over I and 0 ≤ fK ≤ 1 a rational number.

- A transaction database T over I is said to satisfy a frequency expression
freq(K) = fK iff freq(K, T) = fK .

- A transaction database is said to satisfy a set of frequency expressions S iff
it satisfies every expression in S.

- Let K be an itemset over I, and 0 ≤ l ≤ u ≤ 1. A set of frequency expressions
S implies bounds [l, u] for K, denoted S |= freq(K) ∈ [l, u], iff in every
transaction database satisfying S, it holds that l ≤ freq(K, T) ≤ u.

- Let K be an itemset over I, and 0 ≤ l ≤ u ≤ 1. A set of frequency expressions
S implies tight bounds [l, u] for K, denoted S |=tight freq(K) ∈ [l, u], iff
S |= freq(K) ∈ [l, u] and for all rational numbers l′, u′ such that S |=
freq(K) ∈ [l′, u′] it holds that l′ ≤ l and u′ ≥ u.

Example 4. Let

S :=
{

freq(A) = 2
3 , freq(B) = 2

3 , freq(C) = 2
3

freq(AB,R) = 1
3 , freq(AC,R) = 2

3 , freq(BC, R) = 1
3 .

}
.

From the monotonicity rule we know that

S |= freq(ABC) ∈ [0,
1
3
] .

From Section 2 we know that

S |=tight freq(ABC) ∈ [0, 0] .

In the remainder of the paper, when we study the bounds implied for an
itemset K, we will always start with a set of frequency expressions that contains
exactly one expression for every subset of K, and no other expressions. For
this specific case we will give sound and complete rules for deduction bounds of
an itemset. This special case is interesting because in many algorithms, like in
Apriori, we have the frequencies of all subsets at our disposal. If there are more
expressions, or some expressions are missing, the rules will no longer compute a
complete answer.

4 Deduction Rules

In this section we describe sound and complete rules for deducing tight bounds
on the frequency of a set K if the frequencies of all its subsets are given. Because
we do not consider itemsets that are not subset of K, we can assume that all
items in the database are elements of K. This assumption allows us to reduce
the complexity of the problem. Since “projecting away” the other items in a
transaction database does not change frequencies of subsets of K, we can assume
without loss of generality that K = I. This property is expressed by the next
lemma, but first we define the projection of a transaction database on an itemset.

Definition 1. Let I be a set of items, K ⊆ I.

- The projection of a transaction t over I on K, denoted πKt, is a transaction
t′ with t′.ID = t.ID, and t′.Items = t.Items ∩ K. Hence, the projection
keeps only the items of the transaction that are in K.

- The projection of a transaction database T over I on K, denoted πKT , is
defined as πKT := {πKt | t ∈ T}.

Lemma 3. Let I be a set of items, and L,K ⊆ I be itemsets such that L ⊆ K.
For every transaction database T over I it holds that

freq(L, T) = freq(L, πKT).

Proof. Straightforward; if L ⊆ K, then L ⊆ t.Items implies L ⊆ (t.Items∩K) =
(πKt).Items.

Corollary 2. Given a set of items I, K ⊆ I, and a rational number fL for each
L ⊆ K. There exists a transaction database T satisfying ∀L ⊆ K : freq(L, T) =
fL iff the following system of inequalities has a solution.

tL ≥ 0 ∀L ⊆ K∑
L⊆K tL = 1∑
L⊆M⊆K = fL ∀L ⊆ K

Let K be a set of items, T a transaction database over K. We assume that
all frequencies of the strict subsets of K are known, let fL denote freq(L, T).
From Lemma 1, we derive the following equalities.

f{} = t{}tA + tB + tC + tD + +tAB + tAC + . . . + tK
fA = tA + tAB + tAC + . . . + tABC + tABD + . . . + tK
fB = tB + tAB + tBC + . . . + tABC + tABD + . . . + tK
.
fAB = tAB + tABC + tABD + . . . + tK
.
fK−A = t(K−A) + tK
fK = tK

(4)

This system of equalities contains 2|K| equations and 2|K|+1 variables (tL for all
L ⊆ K, and fK). Thus, the solution of this system will contain one parameter.
Let fK be this parameter. This choice gives the following solution.

t{} = f{} − fA − fB − fC − fD + fAB + . . .− fABC − . . . + (−1)kfK

tA = fA − fAB − fAC − . . . + fABC + . . .− fABCD − . . . + (−1)k−1fK

.
tAB = fAB − fABC − fABD − . . . + fABCD + fABCE + . . . + (−1)k−2fK

.
tK−A = fK−A − fK

tK = fK

(5)
Thus, for every value of fK we get a solution of the system in (4). Some of

these solutions will present fractions in a transaction database, and some will
not (e.g., if one of the tK ’s is negative.) The lower bound on the frequency
of K based on the frequencies of the subsets will be the smallest value of fK

such that the associated solution of the system in (4) represents fractions in a
transaction database. Analogously, the upper bound will be the greatest fK such
that the solution represents fractions in a transaction database. From Lemma 2
we know that the solution represents a valid transaction database if and only if
the following conditions are satisfied by the solution.

tA ≥ 0
tB ≥ 0
.
tK ≥ 0
t{} + tA + tB + . . . + tK = 1

(6)

Therefore, by applying these conditions to the parameterized solution, we get
the following conditions and theorem for determining tight bounds on freq(K, T).
Notice the similarity with the inclusion-exclusion principle [13, p. 181]. Notice
also that the condition t{} + tA + tB + . . . + tK = 1 is already fulfilled by the

solutions of the system, since f{} = 1.

(−1)kfK ≥ 1−
[
(−1)k(fK−A + fK−B + . . .) + (−1)k−1(fK−AB + . . .)

+ . . . + fA + fB + . . .
]

(−1)k−1fK ≥ −fA + fAB + fAC + . . .− fABC − . . . + fABCD . . .
.
(−1)k−2fK ≥ −fAB + fABC + fABD + . . .− fABCD − fABCE − . . .

+fABCDEF + fABCDEG + . . .
.
−fK ≥ fK−A

fK ≥ 0
(7)

Theorem 1. Let I be a set of items, K ⊆ I. For each L ⊂ K a rational number
fl has been given. Let Lower(K) be the right-hand sides of the equations in (7)
with left-hand side fK , and Upper(K) be the negation of the right-hand sides of
the equations in (7) with left-hand side −fK . Then

{freq(L) = fL | L ⊂ K} |=tight fK ∈ [max(Lower(K)),min(Upper(K))] .

fABCD ≤ fA − fAB − fAC − fAD + fABC + fABD + fACD

fABCD ≤ fB − fAB − fBC − fBD + fABC + fABD + fBCD

fABCD ≤ fC − fAC − fBC − fCD + fABC + fACD + fBCD

fABCD ≤ fD − fAD − fBD − fCD + fABD + fACD + fBCD

fABCD ≥ fABC + fABD − fAB

fABCD ≥ fABC + fACD − fAC

fABCD ≥ fABD + fACD − fAD

fABCD ≥ fABC + fBCD − fBC

fABCD ≥ fABD + fBCD − fBD

fABCD ≥ fACD + fBCD − fCD

fABCD ≤ fABC

fABCD ≤ fABD

fABCD ≤ fACD

fABCD ≤ fBCD

fABCD ≥ 0

fABCD ≥ fABC + fABD + fACD + fBCD − fAB − fAC − fAD − fBC − fBD − fCD

+fA + fB + fC + fD − 1
(8)

Fig. 1. Tight bounds on freq(ABCD, T)

Example 5. Consider the following transaction database.

T =

TID items
1 A,B
2 A,C,D
3 A,B,D
4 C,D
5 B,C,D
6 A,D
7 B,D
8 B,C,D
9 B,C,D
10 A,B,C, D

fA = 1
2 , fB = 7

10 , fC = 3
5 ,

fD = 9
10 , fAB = 3

10 , fAC = 1
5 ,

fAD = 2
5 , fBC = 2

5 , fBD = 3
5 ,

fCD = 3
5 , fABC = 1

10 , fABD = 1
5 ,

fACD = 1
5 , fBCD = 2

5 .

Figure 1 gives the rules to determine tight bounds on the frequency of ABCD.
Based on these deduction rules we derive the following bounds on freq(ABCD,T)
without counting in the database.

Lower bound: freq(ABCD, T) ≥ 1
10 (Rule fABCD ≥ fABC + fACD − fAC)

Upper bound: freq(ABCD, T) ≤ 1
10 (Rule fABCD ≤ fABC)

Therefore, we can conclude, without having to count, that the frequency of
ABCD in T is exactly 1

10 . In the experiments we will see that this exactness is
not very unusual; even in real-life data, and for small itemsets, we will be able
to derive very narrow intervals.

5 Experiments

5.1 Dataset

The dataset we used to perform the experiments is derived from the census-
dataset as available in the UCI KDD-repository [12]. This dataset is in se a
relational table, with 68 numerical attributes. We transformed this dataset into
a transaction database in the following way: every (attribute,value)-pair was
considered as a different item. Notice that therefore a value a in attribute A
denotes another item as the same value a but in another attribute B. Using
this convention, every tuple was transformed into a transaction with 68 items.
In order to speed-up the experiments, we only used a random sample of 10000
transactions. The dataset contains 396 different items.

5.2 Results

In this section we describe the tests we performed and the results.

Pruning In this test we want to see how much pruning can be performed by us-
ing the deduction rules. We mined the transaction database at different support
levels, and we record in every pass of the Apriori-algorithm the following mea-
sures: (a) the number of candidate itemsets, (b) the number of frequent itemsets,
(c) the number of itemsets for which the lower bound is above the support, and
(d) the number of itemsets for which the upper bound is below the support.

It is important to remark that in these counts only the itemsets that are not
pruned by the monotonicity rule are evaluated with the deduction rules. Thus,
the numbers we give represent pruning additional to the monotonicity rule. From
these tests it is clear that the amount of pruning done by the monotonicity rule
can be improved drastically. For example, in all tests, from pass 4 we know al-
most perfectly, even before we counted the candidates, which candidates will
turn out to be frequent.

Support = 90%, all 396 items
|Can| #Freq #l ≥ s #u < s

1 396 20
2 190 159 151 0
3 750 598 592 152
4 1512 1170 1170 342
5 1469 1186 1186 283

. . .

Support = 90%, 100 items
|Can| #Freq #l ≥ s #u < s

1 100 20
2 190 159 151 0
3 750 598 592 152
4 1512 1170 1170 342
5 1469 1186 1186 283
6 710 622 622 88
7 170 165 165 5
8 16 16 16 0
9 1 1 1 0

Support = 10%, all 396 items
|Can| #Freq #l ≥ s #u < s

1 396 133
2 8778 5444 3085 0
3 131258 121875 117089 2089
4 1853220 1809695 1802860 35491

. . .

Support = 10%, 20 items
|Can| #Freq #l ≥ s #u < s

1 20 16
2 120 101 72 0
3 355 348 347 2
4 759 754 752 5
5 1091 1050 1050 41
6 985 974 974 11
7 623 621 621 2
8 278 278 278 0
9 82 82 82 0
10 14 14 14 0
11 1 1 1 0

Interval width We test the mean width of the intervals we derive. If an interval
is a point-interval; i.e. the lower bound equals the upper bound, there is no
need to count the frequency, nor is there a need to store the set in a concise
representation of the frequent itemsets. Therefore, we pay special attention to
this type of itemsets. We mined for frequent itemsets at different support levels
and we report for each loop of the Apriori-algorithm the following measures:
(a) the mean interval width, (b) the number of candidate itemsets for which
l = u, and (c) the number of candidate itemsets with interval width at most
0.1%, and 0.05%.

From the tests we see that the width decreases very fast. After pass 4, in
all our tests, we know exactly the frequencies of all sets that follow. Of course,
when we increase the number of transactions, the number of frequencies we know
exactly will decrease, but the width of the intervals will remain the same.

Support = 90%, all 396 items
|Can| Width l = u 0.05% 0.1%

1 396
2 190 2.16% 0 0 19
3 750 0.029% 313 625 697
4 1512 ≈ 0% 1494 1512 1512
5 1469 0% 1469 1469 1469

. . .

Support = 10%, 20 items
|Can| Width l = u 0.05% 0.1%

1 20
2 120 7.5% 0 0 0
3 355 0.21% 71 170 201
4 759 ≈ 0% 590 746 756
5 1091 ≈ 0% 1087 1091 1091
6 985 0% 985 985 985
7 623 0% 623 623 623
8 278 0% 278 278 278
9 82 0% 82 82 82
10 14 0% 14 14 14
11 1 0% 1 1 1

Concise representations In this test we measure how large a concise represen-
tation of the set of frequent itemsets would be. Let [lK , uK] be the bounds we
can derive for an itemset K, based on the frequency of its subsets. As a con-
cise representation of the set of frequent itemsets F we take the following set:
C := {(K, freq(K, T)) ∈ (F × [0, 1]) | lK 6= uK}. The following table gives |C|
and the number of frequent sets for some tests. In the tests, the concise repre-
sentation is much smaller than the actual set of frequent itemsets. This concise
representation contains all information needed to find frequent itemsets.

Support |I| #Freq |C|
90% 100 3937 634
10% 20 4239 569
1% 10 255 113

6 Conclusions and Further Work

We presented sound and complete rules for deducing bounds on the frequency of
an itemset. These rules have many possible applications, such as improving the
pruning in the Apriori-algorithm, making concise representations, and deducing
the result of a data mining query based on previous query results. We imple-
mented the rules and we evaluated them against a real-life dataset. Although
the results of the experiments are still premature, they show that in at least the
census-dataset, many useful deductions can be made. The results even show that
in most cases the frequencies of the itemsets up to length 4 determine all other
frequencies almost exactly.

Interesting further work includes testing on different datasets, comparing
with other consise representations such as free sets and closed sets, and evaluat-
ing which rules tend to give the best bounds. An important question to answer
here is: are all rules as important? We also need to find an effective way to
evaluate the rules. At this moment, a brute force calculation is performed. This
calculation takes exponential time in the size of the itemset to be tested.

References

1. R. Agrawal, T. Imilienski, and A. Swami. Mining association rules between sets of
items in large databases. In Proc. ACM SIGMOD, pages 207–216, 1993.

2. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.
VLDB, pages 487–499, 1994.

3. J.-F. Boulicaut and A. Bykowski. Frequent closures as a concise representation for
binary data mining. In Proc. PaKDD, pages 62–73, 2000.

4. J.-F. Boulicaut, A. Bykowski, and C.Rigotti. Approximation of frequency queries
by means of free-sets. In Proc. PaKDD, pages 75–85, 2000.

5. A. Bykowski, and C. Rigotti. A Condensed Representation to find Frequent Pat-
terns. In Proc. ACM PODS, 2001.

6. A. Bykowski, J.K. Seppänen, and J. Hollmén. Model-independent bounding of
the supports of Boolean formulae in binary data. CIS Research Report, Helsinki
University of Technology, September 2001.

7. T. Calders and J. Paredaens. Axiomatization of frequent sets. In Proc. ICDT,
pages 204–218, 2001.

8. B. Goethals and J. Van den Bussche. A priori versus a posteriori filtering of
association rules. In ACM SIGMOD Workshop DMKD, 1999.

9. B. Goethals and J. Van den Bussche. On supporting interactive association rule
mining. In Proc. DaWaK, pages 307–316, 2000.

10. D. Groth and E. Robertson. Discovering frequent itemsets in the presence of highly
frequent items. In In INAP Int’l Conf. Applications of Prolog RBDM workshop,
2001.

11. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
In Proc. ACM SIGMOD, pages 1–12, 2000.

12. S. Hettich and S. D. Bay. The UCI KDD Archive. [http://kdd.ics.uci.edu]. Irvine,
CA: University of California, Department of Information and Computer Science,
1999.

13. D. Knuth. Fundamental Algorithms. Addison-Wesley, Reading, Massachusetts,
1997.

14. H. Mannila and H. Toivonen. Multiple uses of frequent sets and condensed repre-
sentations. In Proc. KDD, 1996.

15. H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge
discovery. DMKD, 1(3):241–258, 1997.

16. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed
itemsets for association rules. In Proc. ICDT, pages 398–416, 1999.

17. J. Pei, J. Han, and R. Mao. Closet: An efficient algorithm for mining frequent
closed itemsets. In ACM SIGMOD Workshop DMKD, 2000.

