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Abstract. We present a simple Data Mining Logic (DML) that can ex-
press common data mining tasks, like “Find Boolean association rules”
or “Find inclusion dependencies.” At the center of the paper is the prob-
lem of characterizing DML queries that are amenable to the levelwise
search strategy used in the a-priori algorithm. We relate the problem to
that of characterizing monotone first-order properties for finite models.

1 Introduction

In recent years, the problem of finding frequent itemsets in market-basket data
has become a popular research topic. The input of the problem is a database
storing baskets of items bought together by customers. The problem is to find
sets of items that appear together in at least s% of the baskets, where s is some
fixed threshold; such sets are called frequent itemsets. Although the problem of
finding frequent itemsets can easily be stated as a graph-theoretical problem, the
formulation in marketing terms [1] probably contributed much to the success of
the problem.

The a-priori algorithm is probably the best-known procedure to solve this
problem. It is based on a very simple property: If a set X of items is no fre-
quent itemset, then no superset of X is a frequent itemset either. This property
has been given different names; in [4, page 231] it is called anti-monotone, and
defined as: “If a set cannot pass a test, all of its supersets will fail the same
test as well.” The a-priori algorithm thus first searches for singleton frequent
itemsets, and then iteratively evaluates ever larger sets, while ignoring any set
that cannot be frequent because a subset of it turned out to be infrequent in
earlier iterations. The anti-monotonicity property underlying the a-priori algo-
rithm has subsequently been generalized to levelwise search [11]. As a matter of
fact, the a-priori trick is applicable in many other data mining tasks, such as the
discovery of keys, inclusion dependencies, functional dependencies, episodes [10,
11], and other kinds of rules [16]. With the advent of data mining primitives in
query languages, it is interesting and important to explore to which extent the
a-priori technique can be incorporated into next-generation query optimizers.

During an invited tutorial at ICDT’97, Heikki Mannila raised an interesting
and important research problem:
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“What is the relationship between the logical form of sentences to be
discovered and the computational complexity of the discovery task?” [10,
slide 51]

It is natural to ask a related question about the relationship between the logical
form of sentences and the applicability of a given data mining technique, like
the a-priori technique:

“What is the relationship between the logical form of sentences to be
discovered and the applicability of a given data mining technique?”

This question is of great importance when we move to database systems that sup-
port data mining queries. Data mining querying differs from standard querying
in several respects [5], and conventional optimizers that were built for standard
queries, may not perform well on data mining queries. Next-generation query
optimizers must be able to decide which data mining optimization techniques
are effective for a given data mining query. In the domain of mining frequent
itemsets and association rules, there has been a number of recent papers relating
to the second question raised above. Lakshmanan et al. [7, 12] have introduced
the paradigm of constrained frequent set queries. They point out that users typ-
ically want to impose constraints on the itemsets to be discovered (for example,
itemsets must contain milk); they then explore the relationships between the
properties of constraints on the one hand and the effectiveness of certain prun-
ing optimizations on the other hand. Tsur et al. [15] explore the question of how
techniques like the a-priori algorithm can be generalized to parameterized queries
with a filter condition, called query flocks. In spite of these works, it seems fair
to say that the relationship between the form of sentences to be discovered and
the applicability of data mining techniques has not been systematically explored,
and that a clean unifying framework is currently missing.

In this paper, we further explore from a logic perspective the relationship
between the form of sentences to be discovered and the applicability of the a-
priori technique. To this extent, we first have to decide upon which logic to
use. The logic should allow expressing some basic rule (or dependency) mining
tasks, like mining Boolean association rules, functional dependencies, or inclu-
sion dependencies. As dependencies are mostly stated in terms of attributes, we
propose a logic, called Data Mining Logic (DML), that extends relational tuple
calculus with variables ranging over attributes and over sets of attributes (i.e.,
over relational schemas). We do not claim originality for the DML way of query-
ing schemas; in fact, variables ranging over attribute and relation names also
appear in other languages [8, 13]. Our main objective was not to design a new
language, however, but rather to answer the question of which classes of queries
are amenable to levelwise search. DML provides an adequate framework for ex-
ploring that question. Moreover, we believe that the generality of the language
allows “transplanting” the results in other frameworks. The main contribution
of the paper lies in revealing a significant relationship between the applicability
of the a-priori technique in DML queries and monotone first-order properties for
finite models.
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The paper is organized as follows. Section 2 illustrates DML by an example.
The syntax and semantics of DML are defined in Section 3. In Section 4, we
show how certain common data mining tasks can be expressed in DML. Sec-
tion 5 introduces subset-closed and superset-closed queries; these are the queries
that admit levelwise search. Unfortunately, these query classes are not recur-
sive. Section 6 introduces a recursive subclass of superset-closed queries, called
positive queries. Although many “practical” superset-closed queries can be ex-
pressed positively, the class of positive queries does not semantically cover the
whole class of superset-closed queries. The latter result is proved in Sections 7
through 9. Finally, Section 10 concludes the paper. Detailed proofs of all lemmas
and theorems can be found in [3].

2 Introductory Example

We extend the relational tuple calculus with attribute-variables that range over
attributes, and schema-variables that range over sets of n-ary tuples of at-
tributes. In the following example, X is an attribute-variable and X a unary
schema-variable. The query asks for sets X of attributes such that at least two
distinct tuples t and s agree on each attribute of X . Requiring that t and s be
distinct is tantamount to saying that they disagree on at least one attribute Z.

{X | ∃t(∃s(¬∃Y (X (Y ) ∧ t.Y 6= s.Y ) ∧ ∃Z(t.Z 6= s.Z)))} (1)

For the relation:

R A B C D
0 0 0 1
0 0 1 2
0 1 1 3
1 1 2 2

the result is:

X (1)

{A,B}
{A,C}
{A}
{B}
{C}
{D}
{}

.

Note that {B,C} is not in the answer set, since R does not contain two distinct
tuples that agree on both B and C. One can easily verify that whenever a set
appears in the above result then all its subsets appear as well. Moreover, this
property remains true no matter what is the schema or the content of the input
relation R. We will say that the query is subset-closed .

3 DML Syntax and Semantics

3.1 Syntax

We define our Data Mining Logic (DML). The idea is to extend relational tuple
calculus with attribute-variables that range over attributes, and schema-variables
that range over sets of n-ary tuples of attributes. For simplicity, we assume that
the database consists of a single relation; therefore there is no need to introduce
predicate symbols.
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DML Alphabet

– Denumerably many attribute-variables X, Y, Z,X1, Y1, Z1, . . .

– Denumerably many tuple-variables t, s, t1, s1, . . .

– For every n ∈ N, at most denumerably many n-ary schema-variables X , Y,
X1, Y1,. . .

– A set C of constants.

For simplicity, the arity of a schema-variable may be denoted in superscript:
X (n) denotes an n-ary schema-variable. Attribute-variables and tuple-variables
together are called simple-variables.

Atomic DML Formulas

1. If X and Y are attribute-variables, t and s are tuple-variables, and a is a
constant, then X = Y , t.X = s.Y , and t.X = a are atomic DML formulas.

2. If X is an n-ary schema-variable, and X1, . . . , Xn are attribute-variables,
then X (X1, . . . , Xn) is an atomic DML formula.

DML Formulas

1. Every atomic DML formula is a DML formula.
2. If δ1 and δ2 are DML formulas, then ¬δ1 and (δ1 ∨ δ2) are DML formulas.
3. If δ is a DML formula and X is an attribute-variable, then ∃X(δ) is a DML

formula.
4. If δ is a DML formula and t is a tuple-variable, then ∃t(δ) is a DML formula.

Note that the existential quantifier ∃ can be followed by an attribute-variable as
well as a tuple-variable. These two usages of ∃ will have different semantics. Since
attribute-variables and tuple-variables are assumed to be distinct, the double use
of ∃ does not result in any confusion.

A DML formula is called closed iff all occurrences of simple-variables (i.e.,
tuple-variables and attribute-variables) are bound, where boundedness is defined
as usual. A closed DML formula is also called a DML sentence. The abbrevi-
ations ∧,→,↔, true, false,∀, 6=, with conventional precedence relationship, are
introduced as usual. In addition we introduce the abbreviations:

– ∀X (X1, . . . , Xn)(δ) for ∀X1(. . . (∀Xn(X (X1, . . . , Xn) → (δ))) . . .), and
– t = s for ∀X(t.X = s.X).

DML Queries A DML query is an expression of the form {X1, . . . ,Xm | δ},
where δ is a DML sentence and X1, . . . ,Xm are exactly all distinct schema-
variables occurring in δ (m ≥ 1).
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3.2 DML Semantics

We assume the existence of a set att of attributes. A schema is a finite, nonempty
set of attributes.3 A tuple over the schema S is a total function from S to the
set C of constants. A relation is a finite set of tuples.

The notion of DML structure is defined relative to a schema S: It is a pair
〈R,Σ〉 where R is a relation over S and Σ is a schema-variable assignment
assigning some Σ(X (n)) ⊆ 2(Sn) to every n-ary schema-variable X (n). For con-
venience, the schema of R will be denoted |R|.

A DML interpretation is a pair 〈〈R,Σ〉, σ〉 where 〈R,Σ〉 is a DML structure
and σ is a simple-variable assignment assigning some tuple over |R| (which may
or may not belong to R) to every tuple-variable t, and assigning some σ(X) ∈ |R|
to every attribute-variable X.

The satisfaction of DML formulas is defined relative to a DML interpretation
〈〈R,Σ〉, σ〉: 4

〈〈R,Σ〉, σ〉 |= X = Y iff σ(X) = σ(Y )
〈〈R,Σ〉, σ〉 |= t.X = s.Y iff σ(t)(σ(X)) = σ(s)(σ(Y ))
〈〈R,Σ〉, σ〉 |= t.X = a iff σ(t)(σ(X)) = a
〈〈R,Σ〉, σ〉 |= X (X1, . . . , Xn) iff (σ(X1), . . . , σ(Xn)) ∈ Σ(X )
〈〈R,Σ〉, σ〉 |= ¬δ iff 〈〈R,Σ〉, σ〉 6|= δ
〈〈R,Σ〉, σ〉 |= δ1 ∨ δ2 iff 〈〈R,Σ〉, σ〉 |= δ1 or 〈〈R,Σ〉, σ〉 |= δ2

〈〈R,Σ〉, σ〉 |= ∃X(δ) iff 〈〈R,Σ〉, σX→A〉 |= δ for some A ∈ |R|
〈〈R,Σ〉, σ〉 |= ∃t(δ) iff 〈〈R,Σ〉, σt→r〉 |= δ for some r ∈ R

As mentioned before, we use only a single relation R to simplify the notation.
Importantly, the semantics specifies that the quantification ∃X(δ), where X is
an attribute-variable, is over the (finite) schema |R| of R. Also, the quantification
∃t(δ), where t is a tuple-variable, is over the (finite) relation R. For example,
the statement ∃t(∃X(t.X = 1)) is satisfied relative to a DML interpretation
〈〈R,Σ〉, σ〉 if the value 1 occurs somewhere in the relation R. The statement
∃t(true) is satisfied if R contains at least one tuple.

The satisfaction of closed DML formulas does not depend on the simple-
variable assignment σ. We write 〈R,Σ〉 |= δ iff 〈〈R,Σ〉, σ〉 |= δ for every simple-
variable assignment σ.

The answer to a DML query is defined relative to a relation R. The answer
to the DML query {X1, . . . ,Xm | δ} is the set:

{(Σ(X1), . . . , Σ(Xm)) | 〈R,Σ〉 is a DML structure satisfying δ} .

3 The extension to schemas without attributes is possible but less pertinent in a data
mining context.

4 If f is a function then fx→a is the function satisfying fx→a(y) = f(y) for every y
other than x, and fx→a(x) = a. fx→a,y→b is a shorthand for (fx→a)y→b.
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4 Additional Examples

4.1 Frequent Itemsets and Non-trivial Functional Dependencies

Consider a relation where every attribute represents a product, and every tuple
a customer transaction. For a given row t and attribute A, the value t(A) = 1 if
the product A was bought in the transaction t, and t(A) = 0 otherwise. Next,
to be able to store two transactions containing exactly the same products, a
special attribute TID is needed that serves as the unique transaction identifier.
We assume that the values 0 and 1 are not used to identify transactions, so that
TID cannot possibly be interpreted as a product. The data mining problem is to
find frequent itemsets [1]: Find sets X of attributes such that at least n distinct
tuples have value = 1 for all attributes of X . The value n > 0 is an absolute
support threshold in this example. The DML query is as follows:

{X | ∃t1, . . . , tn(
∧

1≤i<j≤n

ti 6= tj ∧ ∀X (Y )(t1.Y = 1 ∧ . . . ∧ tn.Y = 1))} (2)

The following DML query asks for non-trivial functional dependencies, i.e., func-
tional dependencies whose right-hand side is not a subset of the left-hand side:

{X ,Y | ∀t(∀s((∀X (X)(t.X = s.X)) → (∀Y(Y )(t.Y = s.Y ))))
∧∃Y(Y )(¬X (Y ))} (3)

For the relation:

R A B
0 0
0 1
1 2

the result is:
X Y
{B} {A}
{B} {A,B}

.

The two lines of the result encode the functional dependencies {B} → {A} and
{B} → {A,B} respectively. The discovery of functional dependencies has been
studied for many years now (see for example [6, 9]).

4.2 The Use of Binary Schema-variables: Inclusion Dependencies

In all examples introduced so far, all schema-variables were unary, i.e., had ar-
ity 1. We now illustrate the need for binary schema-variables. In the example,
sets of attribute pairs are used to encode inclusion dependencies that hold in
a single relation. An inclusion dependency 〈A1, . . . , An〉 ⊆ 〈B1, . . . , Bn〉 can be
encoded by the set {(A1, B1), . . . , (An, Bn)}. The dependency states that for
every tuple t in the relation under consideration, there is a tuple s such that
t(A1) = s(B1) and . . . and t(An) = s(Bn). In the following query, the binary
schema-variable X (2) is used to range over inclusion dependencies.

{X (2) | ∀s(∃t(∀X (Y, Z)(Y 6= Z ∧ s.Y = t.Z)))} (4)
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For the relation:

R A B C D E
1 2 3 4 5
1 1 2 1 5
1 1 1 4 5
1 2 5 1 5

the result is:

X (2)

{(A,B), (A,C)}
{(A,B), (A,D)}
{(A,B), (B,C)}
{(A,D), (E,C)}

{(A,B)}
{(A,C)}
{(A,D)}
{(B,C)}
{(E,C)}

{}

.

Note that the result is again subset-closed.

5 Subset-closed and Superset-closed DML Queries

The basic property underlying the a-priori algorithm [1] is that every subset of a
frequent itemset is also a frequent itemset. This property is generalized for DML
queries and called subset-closed :

Definition 1. Let δ be a DML sentence with schema-variable X . δ is subset-
closed in X (or, X -subset-closed) iff for every DML structure 〈R,Σ〉, for every
T ⊆ Σ(X ), if 〈R,Σ〉 |= δ then 〈R,ΣX→T 〉 |= δ. A DML sentence δ is subset-
closed iff it is subset-closed in every schema-variable. A query {X1, . . . ,Xm | δ}
is subset-closed (in Xi) iff δ is subset-closed (in Xi, i ∈ [1..m]).

Superset-closed DML formulas and queries are defined in the same way (re-
place T ⊆ Σ(X ) by T ⊇ Σ(X )).

Note incidentally that the construct of subset-closedness does not rely on a
fixed underlying schema; that is, Definition 1 considers any relation R over
any schema. Clearly, subset-closedness and superset-closedness are complemen-
tary notions, in the sense that the negation of a subset-closed DML sentence is
superset-closed and vice versa.

Recognizing subset-closed queries is significant from a data mining perspec-
tive because these queries are amenable to query optimization by levelwise
search, in the same way as the problem of mining frequent itemsets is solved
by the a-priori algorithm. The search first examines which singletons are solu-
tions, and then iteratively examines ever larger sets, but without examining any
set that cannot be a solution because in earlier iterations, a proper subset of it
turned out to be no solution. This is the general idea; it is worth pointing out
that also on a more detailed level, techniques of the a-priori algorithm generalize
to subset-closed queries, for example, the candidate generation consisting of join
and prune steps [4, Chapter 6].

The same technique applies to superset-closed queries, in which case the
search starts from the largest set and iteratively examines sets of lower cardinal-
ity, but without ever examining any set that cannot be a solution because one
of its supersets was no solution.
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If future optimizers for data mining queries have to incorporate a-priori opti-
mization, then they should be able to recognize subset/superset-closed queries.
Unfortunately, the class of subset-closed DML queries is not recursive.

Theorem 1. Subset-closedness of DML queries is undecidable.

Theorem 1 raises the problem of finding a recursive subclass of the class of
subset-closed queries that semantically covers a large (or the entire) class of
subset-closed queries. Positive DML queries are a candidate.

6 Positive DML Queries

Definition 2. A DML formula δ that contains the schema-variable X , is pos-
itive in X (or X -positive) iff every symbol X lies within the scope of an even
number of negations. A DML formula δ is positive iff it is positive in every
schema-variable. A query {X1, . . . ,Xm | δ} is positive (in Xi) iff δ is positive (in
Xi, i ∈ [1..m]).

Note incidentally that positive, unlike subset-closed, is defined for DML formulas
that may not be closed.

Lemma 1. Let δ be a DML sentence. If δ is X -positive, then δ is X -superset-
closed. If ¬δ is X -positive, then δ is X -subset-closed.

For example, the application of Lemma 1 tells us that the query (1) in Section 2
is subset-closed. By the same lemma , the query (2) for finding frequent sets and
the query (4) for finding inclusion dependencies, both introduced in Section 4,
are subset-closed. Note that abbreviations have to be spelled out before testing
positiveness. In particular, ∀X (Y )(δ) becomes ∀Y (¬X (Y )∨ δ). The lemma does
not apply to the query (3) for finding functional dependencies. When the query
is spelled out

{X ,Y | ∀t(∀s((∃X(X (X) ∧ t.X 6= s.X)) ∨ ¬(∃Y (Y(Y ) ∧ t.Y 6= s.Y ))))
∧∃Y (Y(Y ) ∧ ¬X (Y ))} , (5)

it turns out that both X and Y occur within an even and an odd number of
negations.

Because subset-closed and superset-closed are complementary notions, it is
sufficient to focus on superset-closed in what follows. Unfortunately, the (recur-
sive) class of positive DML queries does not semantically cover the whole class
of superset-closed DML queries; this negative result obtains even if only queries
with a single schema-variable are considered.

7 A Superset-closed DML Query with a Single
Schema-variable that Cannot be Expressed Positively

In Sections 8 and 9, we show that not every X -superset-closed DML sentence is
equivalent to some X -positive DML sentence. The proof relies on Stolboushkin’s
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refutation [14] of Lyndon’s Lemma (that every monotone first-order property
is expressible positively) for finite models. Although Lyndon’s Lemma was first
refuted for finite models in [2], we rely on Stolboushkin’s construction of a first
order (FO) sentence Ω in the signature 〈H,<〉, where H and < are two bi-
nary predicate symbols, such that Ω is finitely <-monotone,5 but Ω is finitely
equivalent to no <-positive FO sentence.

In general, the failure of Lyndon’s Lemma for DML is not surprising, as DML
is essentially FO in which one can talk about attributes; n-ary schema-variables
correspond to n-ary predicate symbols, and attribute-variables to FO variables.
The new contribution however is that Lyndon’s Lemma fails for DML even if
only DML queries with a single schema-variable X are considered. Such queries
suffice for expressing several common data mining problems, like finding frequent
sets or inclusion dependencies.

We define a mapping D(·) from FO formulas to DML formulas and we show
that D(Ω) is (i) X -superset-closed but (ii) equivalent to no X -positive DML
sentence. The mapping D(·) is such that <-monotone FO sentences are mapped
to X -superset-closed DML sentences (Lemma 4), so that (i) is instantly verified.
To establish (ii), we define a “backward” mapping F(·) from DML formulas to
FO formulas such that:

– X -positive DML sentences are mapped through F(·) on <-positive FO sen-
tences (Lemma 2), and

– every DML sentence equivalent to D(Ω) is mapped through F(·) onto a FO
sentence equivalent to Ω (Lemma 7).

In Sections 8 we define the mappings between DML and FO. Section 9 introduces
the properties introduced above, which finally allow concluding the existence of
an X -superset-closed DML sentence that is equivalent to no X -positive DML
sentence (Theorem 2).

8 Mappings

8.1 Structure Encodings

The mapping D(·) maps FO structures of signature 〈H,<〉 to DML structures.
If I is a FO structure of signature 〈H,<〉, then D(I) = 〈R,Σ〉 will “encode” the
information in I using the following encoding scheme:

– The schema |R| is the domain of I.
– Every tuple t of R encodes an element of I(H) as follows. A tuple t with

t(A) = 1, t(B) = 2, and t(X) = 0 otherwise, encodes that (A,B) ∈ I(H). A
tuple t with t(A) = 3 and t(X) = 0 otherwise, encodes that (A,A) ∈ I(H).
Every element in I(H) is encoded in this way by a tuple in R; moreover, R
contains no other tuples.

5 Ω being finitely <-monotone means that for any (finite) structure I of signature
〈H, <〉, if I |= Ω and I(<) ⊆ T than I<→T |= Ω.
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– A binary schema-variable X is used for encoding <, i.e., Σ(X ) = I(<). No
other schema-variables will occur in the mappings.

Example 1. Let I be a FO structure of signature 〈H,<〉 and universe {A, B, C,
D, E}. Let I(H) = {(A,B), (A,D), (A,E), (C,E), (C,C)}. Then D(I) is a DML
structure 〈R,Σ〉 with R as follows:

R A B C D E
1 2 0 0 0
1 0 0 2 0
1 0 0 0 2
0 0 1 0 2
0 0 3 0 0

8.2 Interpretation Encodings

The mapping D(·) is extended from structures to interpretations. The DML for-
mulas δ considered will contain attribute-variables, tuple-variables, and a single
binary schema-variable X . As explained before, the binary FO predicate sym-
bol < is tied to the schema-variable X . In addition, FO variables are tied to
simple-variables as follows:

– a FO variable x is tied to each attribute-variable X, and
– two FO variables t1, t2 are tied to each tuple-variable t.

Let I be a FO structure of signature 〈H,<〉, and ν a variable assignment to
the variables tied to the simple-variables of the DML formula δ. The mapping
D(·) is extended to the FO interpretation 〈I, ν〉 as follows; D(〈I, ν〉) is the DML
interpretation 〈〈R,Σ〉, σ〉 with the following characteristics:

– 〈R,Σ〉 = D(I), as previously defined,
– σ(X) = ν(x) for every attribute-variable X, and
– for every tuple-variable t, if (ν(t1), ν(t2)) ∈ I(H), then σ(t) is the tuple in

R encoding (ν(t1), ν(t2)) in I(H); otherwise σ(t)(X) = 4 for all X ∈ |R|.
Note that if (ν(t1), ν(t2)) does not belong to I(H), then R contains no tuple
encoding (ν(t1), ν(t2)). In that case σ(t) is chosen to be a tuple that takes
the value 4 in all attributes. Such tuple does not belong to R, as only the
values 0, 1, 2, and 3 can occur in R under the given encoding.

8.3 Formula Mappings

The formula mappings are coined with the mapping D(·) from FO interpreta-
tions to DML interpretations in mind. The formula mappings D(·) and F(·)
are established such that I |= φ if and only if D(I) |= D(φ) (Lemma 3), and
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D(I) |= δ if and only if I |= F(δ) (Lemma 5). The mapping D(·) maps FO
formulas of signature 〈H,<〉 to DML formulas and is defined next:

C1 = ∀t(∀X(t.X = 0 ∨ t.X = 1 ∨ t.X = 2 ∨ t.X = 3))
C2 = ∀t(∃X(t.X = 1 ∨ t.X = 2 ∨ t.X = 3))
C3 = ∀t(∀X(∀Y ((X 6= Y ∧ t.X = t.Y ) → t.X = 0)))
C4 = ∀t((∃X(t.X = 1)) ↔ (∃Y (t.Y = 2)))
C5 = ∀t((∃X(t.X = 3)) → ¬∃Y (t.Y = 1 ∨ t.Y = 2)))
C = (C1 ∧ . . . ∧ C5)

The DML formula C is such that every DML structure satisfying C can be
thought of as the “encoding” by D(·) of some FO structure I of signature 〈H,<〉.

D(φ) = D′(φ) ∧ C

D′(¬φ) = ¬D′(φ)
D′(φ1 ∨ φ2) = D′(φ1) ∨D′(φ2)
D′(∃x(φ)) = ∃X(D′(φ))

D′(H(x, y)) = ∃t((t.X = 1 ∧ t.Y = 2) ∨ (t.X = 3 ∧ t.Y = 3))
D′(x < y) = X (X, Y )

The mapping F(·) maps DML formulas to FO formulas.

F(X = Y ) = x = y

F(t.X = s.Y ) = F((t.X = 0 ∧ s.Y = 0) ∨ . . . ∨ (t.X = 4 ∧ s.Y = 4))
F(t.X = 0) = x 6= t1 ∧ x 6= t2 ∧H(t1, t2)
F(t.X = 1) = x = t1 ∧ x 6= t2 ∧H(t1, t2)
F(t.X = 2) = x 6= t1 ∧ x = t2 ∧H(t1, t2)
F(t.X = 3) = x = t1 ∧ x = t2 ∧H(t1, t2)
F(t.X = 4) = ¬H(t1, t2)
F(t.X = a) = false if a 6∈ {0, 1, 2, 3, 4}
F(X (X, Y )) = x < y

F(¬δ) = ¬F(δ)
F(δ1 ∨ δ2) = F(δ1) ∨ F(δ2)
F(∃X(δ)) = ∃x(F(δ))
F(∃t(δ)) = ∃t1(∃t2(H(t1, t2) ∧ F(δ)))

In what follows, δ denotes a DML formula, and φ a FO formula of signature
〈H,<〉. I denotes a FO structure of signature 〈H,<〉. 〈R,Σ〉 denotes a DML
structure; since X is the only schema-variable involved, it suffices to specify
Σ(X ).
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9 A-priori and Finitely Monotone Properties

The mappings defined in the previous section satisfy certain properties which
eventually allow concluding that the class of positive queries does not semanti-
cally cover the whole class of superset-closed queries.

Lemma 2. Let δ be a DML formula. If δ is X -positive, then F(δ) is <-positive.

We recall that detailed proofs of all lemmas and theorems can be found in [3].

Lemma 3. Let φ be a FO sentence of signature 〈H,<〉. I |= φ iff D(I) |= D(φ).

Corollary 1. Let φ1 and φ2 be two FO sentences of signature 〈H,<〉.
If D(φ1) ≡ D(φ2), then φ1 ≡ φ2.

Lemma 4. Let φ be a FO sentence of signature 〈H,<〉. If φ is <-monotone,
then D(φ) is X -superset-closed.

Lemma 5. Let δ be a DML sentence. I |= F(δ) iff D(I) |= δ.

Lemma 6. Let δ be a DML sentence. If δ |= C, then δ ≡ D(F(δ)).

Lemma 7. Let δ be a DML sentence and φ a FO sentence of signature 〈H,<〉.
If D(φ) ≡ δ, then φ ≡ F(δ).

Theorem 2. There exists an X -superset-closed DML sentence with a single
schema-variable X that is equivalent to no X -positive DML sentence.

Proof. By [14], we can assume the existence of a FO sentence Ω of signature
〈H,<〉 that is finitely <-monotone but that is finitely equivalent to no <-positive
FO sentence. By Lemma 4, D(Ω) is X -superset-closed. It suffices to show that
D(Ω) is equivalent to no X -positive DML sentence. Assume on the contrary
the existence of an X -positive DML sentence δ that is equivalent to D(Ω). By
Lemma 7, Ω ≡ F(δ). Since δ is X -positive, F(δ) is <-positive (Lemma 2). This
contradicts our assumption about Ω. ut

10 Discussion and Future Work

DML allows expressing data mining queries that ask for rules involving sets of
attributes, like “Find frequent itemsets” and “Find functional dependencies.”
The a-priori technique directly applies to all subset-closed and superset-closed
DML queries. Since a DML query is subset-closed if and only if its negation is
superset-closed, it suffices to focus on superset-closedness. Superset-closedness
of DML queries is undecidable. It is an open problem whether there exists a
recursive subclass of superset-closed DML queries such that every superset-closed
DML query is equivalent to some query in this subclass. We revealed a significant
relationship between superset-closedness in DML and finitely monotone first
order properties. Each positive DML query is superset-closed, but there exist
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superset-closed queries with a single schema-variable that cannot be expressed
positively. One may hope that the class of all positive DML queries and their
negations semantically covers all “practical” DML queries that are amenable to
a-priori optimization. Anyway, as long as we do not know a recursive subclass
of the class of superset-closed DML queries that semantically covers the whole
class of superset-closed DML queries, query optimizers can use positiveness of a
query as a criterion for determining the applicability of a-priori pruning.

We list two interesting problems for future work. The first problem concerns
the extension of DML with aggregate functions, which are obviously needed in
many data mining tasks. The query (2) for finding frequent sets, introduced in
Section 4, can probably be expressed more naturally by using some count func-
tion. An interesting problem is to find recursive subclasses of subset/superset-
closed queries in the presence of aggregate functions.

Secondly, certain subqueries of a DML query can be subset/superset-closed,
even though the query itself is not. In this case, a-priori optimization could still
be applied on these subqueries. Recall, for example, that the DML query for find-
ing non-trivial functional dependencies (queries (3) and (5) in Sections 4 and 6
respectively) is neither subset-closed nor superset-closed. However, if we omit
the requirement that the functional dependencies be non-trivial, the query (5)
reduces to:

{X ,Y | ∀t(∀s((∃X(X (X) ∧ t.X 6= s.X)) ∨ ¬(∃Y (Y(Y ) ∧ t.Y 6= s.Y ))))} . (6)

By Lemma 1, the query (6) is X -superset-closed and Y-subset-closed, which is
tantamount to saying that if the functional dependency X → Y is satisfied, and
X ⊆ X ′ and Y ′ ⊆ Y , then X ′ → Y ′ must necessarily be satisfied as well. This
property again allows a-priori pruning in the following way: In order to find all
non-trivial functional dependencies satisfied by a given relation (query (5)), one
could use the a-priori trick on the query that finds all functional dependencies
that are satisfied (query (6)), and filter away those that are trivial. The filter
corresponds to the following subquery of query (5) that was left out in query (6):

{X ,Y | ∃Y (Y(Y ) ∧ ¬X (Y ))} . (7)

That the latter query is X -subset-closed and Y-superset-closed, is of second
importance. This way of optimizing queries by exploiting the a-priori tech-
nique on subset/superset-closed subqueries, resembles the idea underlying query
flocks [15]; we believe that further research is needed to assess its feasibility and
usefulness.
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