Mining Frequent Binary Expressions

Toon Calders* and Jan Paredaens

Universiteit Antwerpen,
Departement Wiskunde-Informatica,
Universiteitsplein 1, B-2610 Wilrijk, Belgium.
{calders,pareda}@uia.ua.ac.be

Abstract. In data mining, searching for frequent patterns is a common
basic operation. It forms the basis of many interesting decision support
processes. In this paper we present a new type of patterns, binary ez-
pressions. Based on the properties of a specified binary test, such as
reflexivity, transitivity and symmetry, we construct a generic algorithm
that mines all frequent binary expressions.

We present three applications of this new type of expressions: mining
for rules, for horizontal decompositions, and in intensional database re-
lations.

Since the number of binary expressions can become exponentially large,
we use data mining techniques to avoid exponential execution times. We
present results of the algorithm that show an exponential gain in time
due to a well chosen pruning technique.

1 Introduction

In data mining, searching for frequent patterns is a basic operation. It forms
the basis of many interesting decision support processes. Most data mining al-
gorithms first start searching frequent patterns. In association rule mining [1],
frequent itemsets are mined.

In this paper we will present a new type of patterns, binary expressions, that
will be the basis of three applications. A binary expression is a conjunction of
binary tests between attributes. An example of such an expression using the test
<is (1 < 2)A(2 < 3), expressing that attribute 1 is smaller than attribute 2 and
attribute 2 is smaller than attribute 3. A binary expression will be called frequent
iff the number of tuples satisfying the expression is bigger than a given threshold.
Based on the properties of a specified binary test, such as reflexivity, transitiv-
ity and symmetry, we construct a generic algorithm that searches all frequent
binary expressions. The properties are used to avoid syntactically different, but
semantically equal expressions. The following two different expressions

(1<2)A(2<3)
(I1<2)A(2<3)A(1<3)

* Research Assistant of the Fund for Scientific Research - Flanders (Belgium)(F.W.O.
- Vlaanderen).

will select exactly the same tuples. This is due to the fact that the binary test
< is transitive. We will give a method to avoid generating both expressions.

In this paper we present three applications that have the mining of frequent
binary expressions in common. The first one is rule mining. A binary association
rule is a rule X — Y, where X and Y are binary expressions. Just like in
association rule mining, we define notions of support and confidence for this type
of rules. The similarities with association rules will be elaborated in Section 3.

The second application is in making horizontal decompositions. Horizontal
decompositions have already been studied extensively[3] and are important in
the context of distributed databases. When we want to make a horizontal de-
composition, it is important to find a good criterion to split the relation. We
will use the frequent binary expressions to make an optimal decomposition of a
relation, based on target sizes of the fragments.

A third application is mining with intensional database relations[4]. In In-
ductive Logic Programming (ILP), the mining base typically contains intensional
relations besides the traditional extensional relations. In this context, in the min-
ing process, the intensional relations can be viewed as tests, in addition to the
traditional tests such as <,=,..., and rules that contain intensional relations
can be mined in much the same way as other tests.

The outline of the paper will be as follows: in Section 2 binary expression,
equivalence of expressions and some other notions are formally defined. In Sec-
tion 3 the applications mentioned above are studied. In Section 4 we give some
properties of the search space of the algorithm. In Section 5 we present a generic
algorithm to find all frequent binary expressions. In Section 6 some experimental
result of the algorithm are given. These results show good scalability properties
of the algorithm. Section 7 concludes the paper.

An extended version of this paper is available as [2].

2 Definitions

Before we elaborate the three applications given in the introduction, we define
formally the notions of respectively a relation, a binary test, a binary expression
and equivalence of expressions

First we fix the relations we will consider. We only look at relations where all
attributes have the same domain U/ . I/ is a, possibly infinite, recursive set. We
use an unnamed perspective; i.e. we will refer to the attributes by their number.

Definition 1. An n — ary relation is a finite subset of U™.
A binary test? 6 over U is a recursive subset of U x U. When (u1,uz) € 0, we
will write wi10us.

We now define the notion of an expression.

1 U stands for Universe.
2 We use the name binary test instead of relation, to avoid confusion with database
relations. Actually, a binary test is just a relation in the mathematical sense.

Definition 2. Let 6 be a binary test. A (0, n)-expression (6 and n will be omitted
when clear from the context) is a conjunction of (i07)’s, where 1 < i,5 < n. The
set of all (6,n)-expressions will be denoted by E(0,n).

The previous definition gave the syntax of an expression. The next definition
gives the semantics of expressions.

Definition 3. Let R be an n-ary relation, e is a (6,n)-expression. o, R = {r €
R | (V(i05) in e)r(i)0r(j)}3 is the selection on e of R.

We are now ready to state the problem of mining all frequent binary expres-
sions.

Definition 4. Let R be an n-ary relation. The frequency of the binary expres-
sion e € £(0,n), denoted freq(e,R) is ‘77627\“'

Let t be a number between 0 and 1. A binary expression e € E(0,n) is t-frequent
iff freq(e, R) > t. (t will be omitted if clear from the context.)

The solution of the freq(R,t,0)-problem is the set of all t-frequent (6,n)-

expressions.

Ezxample 1. Consider the following relation:

11234

112|114 | The solution of the freq(R, %, <)-problem is the set {1 < 2,
115[6[2|11<4,3<2,4<2,1<2A1<4,1<2A3<2,1<2A4<2}.
1(5|1]|1

3 Applications

In this section we describe three applications of mining frequent binary expres-
sions.

3.1 Rule Discovery

First we define a binary association rule.

Definition 5. A binary association rule is a rule X — Y, where X and Y are
(0, n)-expressions.
The support of the rule X — Y is freq(X NY,R).

The confidence of the rule X — Y is JM'
freq(x,R)

Ezxample 2. Consider the relation given in Example 1. The support of the binary
association rule 1 <4 — 1 < 2 is % The confidence is 1.

3 r(i) denotes the i-th component of r; e.g. (a,b,c)(2) = b.

There are multiple similarities between association rules and binary associ-
ation rules. Both rules give frequent dependencies that hold within the tuples
themselves. Unlike for example roll-up dependencies [9], that describe relations
between different tuples, association rules and binary association rules relate
properties of attributes. In association rule mining, frequent itemsets can be
considered as a conjunction of unary predicates. In this setting, binary asso-
ciation rules are a straightforward extension of the unary predicates to binary
predicates. A binary association rule finds associations between binary predi-
cates, where association rules find associations between unary predicates.

3.2 Horizontal Decompositions

Horizontal decompositions are very important for distributed databases. In many
cases it is desirable to fragment the database over different locations. In that case
it is important to find good criteria to divide the database. We will call this a
split-problem. The solution to a split-problem is an expression that selects a
fraction of the tuples whose cardinality is as close to the given goal as possible.

FEzample 3. Consider the relation given in Example 1. 3 < 2 is a solution for
the split-problem where the goal is %, and the binary test <, since |o3<2R] is as
[R|

close to 5~ as possible.

3.3 Intensional Database Relations

In Inductive Logic Programming (ILP) [4], mining conjunctions with intensional
relations besides extensional relations is very common. The mining base used
in Logic Programming typically contains a number of extensional relations and
some intensional relations. The intensional relations are given by a set of de-
scribing rules in a logic programming language, for example Prolog or Datalog.
In the context of mining, the intensional relations can be viewed as tests, in
addition to the traditional tests such as <,=, ...

Ezample 4. Suppose the following logic program is given:
Related(X,Y) :-Parent (X,Y);

Related(X,Z) :-Related(X,Y) & Related(Y,Z);
Related(X,Y) :-Related(Y,X);

Related(X,X);

From the last three rules we can conclude that the binary relation Related
is transitive, symmetric, and reflexive.

In this example the intensional relation Related is in fact a binary test. Using
this similarity, we can apply all results we obtain for mining binary expres-
sions to this case. Suppose for example than we have a predicate King and we
use the binary test Related. We could for example find that the expression
Related(X,Y)&King(X)&King(Y') is frequent. Because we know that Related
is symmetric, we know that testing Related(X,Y)&Related(Y, X)&King(X)&
King(Y) is redundant.

4 The Search Space

The freq(R,t,0)-problem is essentially a search-problem. We want to find all
frequent binary expressions in the search space £(6,n). For all binary tests 6, the
number of expressions in £(4, n) is 2("*) since the number of pairs of attributes is
n?, and for every pair (z,y), 20y is present or absent. However, it is not always
necessary to consider all expressions. When there are equivalent expressions,
there is no need to consider them all.

Ezample 5. 1 =2 A1 =3 is equivalent to 1 =2 A2 = 3.

In Tab. 1, for some binary tests and different number of attributes, the total
number of non-equivalent elements in the search space is given. For example, for
the equality and 3 attributes, the search space is {1=1,1=2,1=3,2=3,1 =
2 = 3}. Therefore, in Tab. 1, the row for n = 3 contains 5, the size of the search
space. The value of 2(n*) ig also given for each value of n.

Table 1. Size of the search space for some binary tests

2
nll < [< [#]=[2"]
i2[1]2[1] 2
2[3|4 2|2 16
3|[19]29|8|5| 512
4/219|35564/15/65536

To exploit the equivalence of expressions we need some properties of the ex-
pressions to decide when two expressions are equivalent. Based on these proper-
ties we will construct a mechanism to avoid generation of equivalent expressions.

Definition 6. A binary test 8 has property

Py = reflexive iff for all 1 <i <n, (i0i) holds.

Q1 = anti-reflexive iff for all 1 <i <n, (i0i) does not hold.

P, = symmetric iff for all 1 < 4,5 <mn, if (105) then also (jOi) holds.

Q2 = anti-symmetric iff for all 1 <i,j <mn, if (i05), then (j0i) does not hold.
P = transitive iff for all1 < 4,5,k <n, if (i05) and (j0k), then also (i0k) holds.
Q3 = anti-transitive iff for all 1 < i,5,k < n, if (i65) and (j0k), then (i0k) does
not hold.

From definition 6, it results that for each ¢, P; holds or @;, or none. This
means that there exist 3% = 27 possible combinations. However, only 16 of them
really exist.

Definition 7. Let 6 be a binary test, and let P C {Py, Py, P3} be the set of P-
properties of 0. An expression e € £(0,n) is closed iff every conjunct (i0j) that

1s mecessary by the properties of P appears in e.

Let Q C{Q1,Q2,Q3} be the set of Q-properties of . An expression e € £(0,n)
1s valid iff all conjuncts that are forbidden by the properties of @, do not appear
me.

Ezample 6. Clearly, e = (1 < 2)A(2 < 3) is not closed since 1 < 3 is necessary by
the transitivity and does not appear in e. On the other hand ¢/ = (1 < 2) A (2 <
3) A (1 < 3) is closed. e and €’ are both valid expressions. (1 < 2) A (2 < 1) is
not valid, since the anti-symmetry forbids (2 < 1) when (1 < 2) is present.

Lemma 1. Given a valid (6, n)-expression e, there is a unique valid and closed
expression €', that is equivalent with e. €' is obtained by augmenting e with all
conjuncts that are necessary by the properties of P of 0. €' is called the closure

of e.

In example 6, ¢’ is the closure of e. It is clear now that in every equivalence
class of expressions there is a unique closed expression. Since we have to test only
one expression of each equivalence class, for solving the freq(R,t,#)-problem, it
is sufficient to test each closed expression.

5 Algorithm

In this section we describe an algorithm that finds all frequent binary expressions
given a binary test and a relation. Basically, the algorithm performs a levelwise
search as described in [6]. The levelwise algorithm is a generate-and-test algo-
rithm. It highly depends on a monotonicity principle saying, roughly speaking,
that whenever e; is more specific than ey, and the result of es is too small then
the result of e is also too small. The next proposition states this monotonicity
principle.

Proposition 1. Let e; and ex be two expressions, R is a relation, and e is
more specific than es, then |oe, R| < |oe, R|.

Consider the following situation: We want to solve the freq(R, %, <)-problem,
and we know that the expression 1 < 2 is not frequent. Then, using Proposition
1, we know that 1 < 2 A1 < 3 cannot be frequent, since 1 < 2 A1 < 3 is more
specific than 1 < 2. So, in this situation there is no need to count the frequency
of 1 <2 A 1< 3. We can prune the expression 1 <2 A1 < 3.

The search space of our algorithm will consist of all closed and valid expres-
sions. In Fig. 1 a part of the search space for freq(R,3, <) is showed. When we
use the term children of an expression, we mean the expressions that are next
more specific in the lattice.

Our algorithm will try to prune as much of the search space as possible. We
start with the most general expression of our search space, and we iteratively test
more specific expressions, without ever evaluating those expressions that cannot
be frequent given the information obtained in earlier iterations. More precisely,
the search space is traversed level by level, from general to specific. In each

1<2 1<3 2<3

(1<2)A(1<3) 1<3)A (2<3)

(
N
(1<2)A(2<3)A (1<3)

Fig. 1. A part of the search space

iteration, the set candidates will contain the candidate frequent expressions. An
“apriori trick” is used; if the frequency of e is below the threshold, and e’ < e,
then we know a priori that e’ must fail the frequency threshold. For this reason,
all expressions that failed the frequency threshold are stored in the set T'ooLow.
This gives us the framework of Fig. 2, which actually is a levelwise search [6].
Steps 3 to 7 are testing the candidates against the database and bookkeeping. In
step 8 the children of the frequent candidates are generated as the candidates for
the next iteration. In step 9, we use the apriori trick to prune away candidates
that cannot be frequent due to information obtained in previous iterations.

1. candidates = {T}; Output = {}; TooLow = {}
2. while(candidates# {}) do
3. Test Test candidates against the database.
4, fean = {c € candidates | c is frequent}
5. nfcan = candidates — fcan
6. Output = Output | fcan
7. TooLow = TooLow|Jnfcan
8. Generate candidates = Upefcan{c | ¢ is a child of p}
9. Prune candidates = candidates — {c | In € TooLow : ¢ <X n}
10. end while
Fig. 2. Algorithm for finding frequent expressions
5.1 Testing

In the test-phase, the frequencies of the candidates are tested against the data-
base. The calculation of the frequency of an expression is very costly, since we
need to iterate over all tuples in the relation to count the number of tuples that
satisfy the expression. To limit the overhead, all candidates in an iteration are
tested in the same run over the database.

5.2 Generation

In the generation phase, we need to generate all closed and valid children of
the frequent candidates. As can be seen in Fig. 1, all children are generated by

adding one conjunct, and taking the closure. However, not all conjuncts can be
used for generating children; in Fig. 1, the closure of (1 < 2), augmented with
(2<3)is (1 <2)A(2<3)A(1< 3), and this is no child of (1 < 2), since
(1 < 2) A(1 < 3) lies between them. In the generation phase this problem is
handled.

In the framework of the algorithm, in the generation phase, all children of the
frequent candidates are generated. It is however sufficient that every expression
only generates a subset of its children, as long as for every expression there is
still at least one generating parent. We only generate those children that are
induced by a sublattice of the search space.

Not generating all children does no harm; still all expressions are generated.
On the other hand, not generating all children has a couple of advantages.

— In step 8. of the algorithm, all expressions generated by frequent candidates
are added as new candidates. Probably lots of duplicates are generated.
These duplicates need to be removed. The less children are generated, the
less duplicates need to be removed.

— By not generating all children, some early pruning is applied. We will discuss
this in more detail in the subsection on pruning.

From this discussion we can conclude that ideally each expression has exactly
one generating parent. This is the case when the spanning sublattice is a tree.

The generation phase is discussed more in-depth in [2], where we introduce
two strategies for the generation, p; and ps.

5.3 Pruning

A basic operation of the algorithm is the pruning. It is essential that this oper-
ation is performed as efficiently as possible. The pruning implies that for every
expression e that is generated in step 8 of the algorithm, we need to investigate
whether there is an expression [in TooLow such that e < [. If this is the case,
we can prune e.

From previous research, we can conclude that a trie is a good structure to
store sequences. A trie uses common prefixes between the sequences to store
them more efficiently. We are not going into detail on tries, for more elaborated
work on tries, we refer to [5] and [7].

Step 8 is not the only step in which pruning occurs. When all generating
parents of an expression are infrequent, the expression will never be generated,
even when there are other parents that are frequent. Thus, the less parents a
node has, the bigger the chance that it never will be generated if some of its
parents are infrequent. This type of pruning is called early pruning. When an
expression is not pruned early, it can still be pruned in step 8 of the algorithm.
This situation occurs when at least one generating parent is frequent, and at least
one other parent is infrequent. Due to the monotonicity principle the expression
will be pruned.

6 Experimental Results

In this section we present some experimental results. We implemented p; and
p2. For a definition and a discussion of these two algorithms, we refer to [2]. The
source code of both implementations can be obtained at
http://cc-www.uia.ac.be/u/calders/.

6.1 Effectiveness of Pruning

In Fig. 3 (left), a lower bound for the total number of closed and valid expressions
in £(<,n) is given for n = 2,4,...,20 for reference. In Fig. 3 (right), some
tests on a randomized dataset are given for increasing number of attributes.
The number of expressions that are examined by our algorithms is given for a
threshold 0.3, and for increasing number of attributes. Note that the scale of the
graph representing the total size of the search space is logarithmic. The number
of expressions examined by the algorithms in this example is exponentially less
than the total number of elements in the search space.

1E+40 70000
1E+36 P

b o 60000 d
1E+28 50000
& T &
16424 £ 40000
° P £
2 1E+20
B 15115 g 300w
1E+12 // = 0000 //‘{
1E+08
10000 a— T M
1 M/ . T T T T T .] 06— T T T

2 4 B g o 12 14 16 18 20 2 4 B 8 10 12 14 16 1|8 20
attributes # attributes

Fig. 3. The size of the search space (left) versus the number of expressions that were
investigated (right)

6.2 Scalability

In Fig. 4, the running time of the two algorithms is measured. When the number
of attributes grows, refinement operator ps becomes much more efficient than
p1- In the left graph, a threshold of 0.4 was used, and the binary test was <.
In the right graph, the binary test = was used, and the test was done with the
refinement operator p,, with a threshold of 0.5. In both graphs, the dataset was
randomly generated. The number of values in U was 2 in the right graph, and 7
in the left one.

7 Conclusion

Binary expressions are an interesting type of patterns for data mining. In this
paper we presented three applications of frequent binary expressions; binary

P £ ~

T 40
7 * Ly B

e o ~

i T 10 /

& e a e

4 6 8 10 12 14 16 18 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#attributes # attributes

Fig. 4. Scalability in the number of attributes

rules, that essentially are extensions of association rules to binary predicates,
horizontal decompositions and the mining of intensional database relations. We
presented and tested an algorithm for finding frequent binary expressions. The
algorithm exploited background information such as reflexivity, transitivity and
symmetry of the binary tests to optimize the search.

References

[1]

2]

R. Agrawal, T. Imilienski, and A. Swami. Mining association rules be-
tween sets of items in large databases. In Proc. ACM SIGMOD, Wash-
ington, D.C., 1993

T. Calders, and J. Paredaens. Mining Binary Expressions: Applications
and Algorithms. Technical Report, Universiteit Antwerpen, Belgium,
June 2000.

P. De Bra. Horizontal decompositions based on functional-dependency-
set-implications. In ICDT. Springer-Verlag, 1986.

L. Dehaspe. Frequent pattern discovery in first-order logic. PhD thesis,
Katholieke Universiteit Leuven, Belgium, Dec. 1998.

J. Han, J.Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In Proc. ACM SIGMOD, 2000

H. Mannila and H. Toivonen. Levelwise search and borders of theories
in knowledge discovery. In Data Mining and Knowledge Discovery 1(3),
1997.

J. Pei, J. Han, B. Mortazavi-Asl, and H. Zhu. Mining access patterns
efficiently from web logs. In PAKDD, 2000.

M. Y. Vardi. The decision problem for database dependencies. In Inf.
Proc. Letters 12(5), 1981.

J. Wijsen, R. Ng, and T. Calders. Discovering roll-up dependencies. In
Proc. ACM SIGKDD, 1999.

