
Non-Derivable Itemset Mining

Toon Calders and Bart Goethals

{toon.calders,bart.goethals}@ua.ac.be
University of Antwerp, Belgium

Abstract

All frequent itemset mining algorithms rely heavily on the monotonic-
ity principle for pruning. This principle allows for excluding candidate
itemsets from the expensive counting phase. In this paper, we present
sound and complete deduction rules to derive bounds on the support of
an itemset. Based on these deduction rules, we construct a condensed
representation of all frequent itemsets, by removing those itemsets for
which the support can be derived, resulting in the so called Non-Derivable

Itemsets (NDI) representation. We also present connections between our
proposal and recent other proposals for condensed representations of fre-
quent itemsets. Experiments on real-life datasets show the effectiveness
of the NDI representation, making the search for frequent non-derivable
itemsets a useful and tractable alternative to mining all frequent itemsets.

Keywords: Data mining, Itemsets, Condensed representation.

1 Introduction

Frequent Set Mining. The frequent itemset mining problem (Agrawal et al.
1993) is by now well known. We are given a set of items I and a database D
of pairs (tid, I) with I a subset of I, and tid a unique identifier. The elements
of D are called transactions. An itemset I ⊆ I is some set of items; its support
in D, denoted by supp(I,D), is defined as the number of transactions in D that
contain all items in I. An itemset is called σ-frequent in D if its support in D
is greater than or equal to a given minimum support threshold σ. D and σ are
omitted when they are clear from the context. The goal is now, given a minimal
support threshold σ and a database D, to find all σ-frequent itemsets in D. The
set of all σ-frequent itemsets in D is denoted F(D, σ).

This problem originates from the field of market basket analysis. The items
are the products in a supermarket, and every transaction can be seen as a
record of the purchases of an individual customer. In this context, frequent
itemsets are sets of products that are often purchased together. The scope of
frequent itemset mining is broader than only market basket analysis, however.
Frequent itemset mining forms the core of many data mining algorithms. Indeed,
the identification of items, products, symptoms, characteristics, etc., that often
occur together can be seen as one of the most basic tasks in data mining. It
is therefore conceivable that theory and algorithms developed for this base case
will carry over to other, more sophisticated data mining problems.

1

Condensed Representations. The search space of the frequent itemset
mining problem, all subsets of I, is clearly huge. Instead of generating and
counting the supports of all these itemsets at once, several solutions have been
proposed to perform a more directed search through all itemsets (Agrawal and
Srikant 1994; Zaki 2000; Zaki et al. 1997; Han et al. 2000). These recent stud-
ies on frequent itemset mining algorithms resulted in significant performance
improvements. In these works, the size of the database and the generation of a
reasonable number of frequent itemsets are considered the most costly aspects
of frequent itemset mining, and most energy goes into minimizing the number
of scans through the database. If the minimal support threshold is set too low,
or the data is highly correlated, however, the number of frequent itemsets it-
self can be prohibitively large. In these situations, no matter how efficient the
frequent set mining algorithm is, generating all frequent sets is impossible. To
overcome this problem, recently several proposals have been made to construct
only a condensed representation of the frequent itemsets (Pasquier et al. 1999;
Bastide et al. 2000; Boulicaut et al. 2000; Boulicaut and Bykowski 2000; Pei
et al. 2000; Zaki and Hsiao 1999; Bykowski and Rigotti 2003; Kryszkiewicz 2001;
Kryszkiewicz and Gajek 2002b; Kryszkiewicz and Gajek 2002a). A condensed
representation only stores a non-redundant cover of all frequent itemsets. In
many practical situations this cover is considerably smaller than the complete
collection of all frequent itemsets. Therefore, a condensed representation can
be used in those situations where it is impossible to find all frequent itemsets.

Goal of the paper. The main goal of this paper is to present several
methods to identify redundancies in the set of all frequent itemsets and to ex-
ploit these redundancies, resulting in a condensed representation of all frequent
itemsets and significant performance improvements of a mining operation.

More specifically, we present a complete set of deduction rules to derive
tight intervals on the support of a candidate itemset, given the supports of all
its subsets. For example, from supp(a) = 5, supp(ab) = 3, and supp(ac) = 4,
we can derive that the support of abc must be in the interval [2, 3]. The upper
bound 3 comes from the monotonicity principle that states that the support
of abc is always smaller than the support of ab. The lower bound 2 can be
seen as follows: there are exactly 5 transactions that contain a. From these 5
transactions, 3 contain b, and 4 contain c. Therefore, there must be an overlap
of at least 2 transactions that contain a, b, and c; that is, the support of abc is
at least 2. In this paper we present a systematic approach to such deductions
of bounds on the support of an itemset, resulting in a complete set of deduction
rules, with which bounds on the support of an itemset are computed. When the
lower bound equals the upper bound, we call an itemset derivable as its support
can be uniquely derived from the supports of its subsets. We claim that in
many applications, derivable itemsets are uninteresting as they represent no
new information given their subsets; their supports are as they are for purely
combinatorial reasons, and hence, do not represent any interesting regularity or
pattern in the data, not already represented by its subsets. Of course, depending
on the application, a user might still be interested in derivable itemsets because
of other characteristics or interestingness measures. Nevertheless, when the
number of frequent itemsets is too large, as is often the case, removing the
derivable itemsets might be a reasonable solution.

Then, we show how to construct a minimal representation of all frequent
itemsets, consisting of those frequent itemsets that are non-derivable, and we

2

present an algorithm that efficiently does so. Additionally, we present an effi-
cient method to find the exact support of all derivable frequent itemsets, without
scanning the database.

Different algorithms for finding non-derivable itemsets are presented and
compared empirically. We also compare the non-derivable itemsets representa-
tion to other representations, and to mining all frequent itemsets.

Contributions. We present many results readily reported upon in our pre-
vious works (Calders and Goethals 2002; Calders 2003b), and add several new
results and properties together with an in depth study, extensive explanations,
many examples and thorough experiments. We also published several other
techniques closely related to the material discussed in this paper, and we give
clear references to them where necessary (Calders and Goethals 2003; Dexters
and Calders 2004; Calders and Goethals 2005b; Calders and Goethals 2005a;
Goethals et al. 2005).

Outline. In the next section, we explain the deduction rules for deducing
the support of itemsets. In Section 3, we present the notion of a Non-Derivable
Itemset and its properties, after which we give an algorithm to efficiently gen-
erate them in Section 4. Section 5 presents several optimizations and variations
of the NDI algorithm. In Section 6, a method to find all frequent itemsets
from the NDI-representation is discussed. In Section 7, we present connections
between our proposal and recent proposals for condensed representations. Sec-
tion 8 contains several experiments on real-life and synthetic datasets showing
the effectiveness of the presented techniques, and Section 9 concludes the paper
in which we also give some ideas for future work.

2 Deduction Rules

A transaction database over a finite set I is a finite set of pairs (tid, J) with tid
a positive integer called the identifier, and J a subset of I. The elements of I
are called items, and the elements of D, transactions. The identifiers must be
unique in the database. That is, there can be no two transactions with the same
identifier in a transaction database. In all that follows, we implicitly assume
that we are working with a transaction database D over the set of items I.

We will often denote an itemset by the sequence of its items. For example,
{a, b, c} is denoted abc. Similarly, the union of two itemsets X and Y is often
denoted XY , and a set I ∪ {a, b} as Iab.

2.1 Generalized Itemset

Let a be an item. We denote the negation of a as a. A transaction is said to
contain a, if it does not contain a.

Let a generalized itemset be a set of items and negations of items. For
example, G = {a, b, c, d} is a generalized itemset. We will often use the notation
XY to denote the generalized itemset X ∪ {y | y ∈ Y }.

A transaction T (tid, J) contains a generalized itemset G = XY , denoted
G ⊆ T , if X ⊆ J and J ∩ Y = ∅.

The support of a generalized itemset G in a database D, denoted supp(G,D),
is the number of transactions of D that contain G. D is omitted when clear from
the context.

3

We say that a generalized itemset G = XY is based on itemset I if I = X∪Y .

Example 2.1 Consider the following database:

tid Items
1 c
2 a, b
3 a, c
4 a, b, c

There are 8 generalized itemsets based on abc: abc, abc,
abc, abc, abc, abc, abc, and abc. The support of abc is
0, since there are no transactions that contain a, and do
contain neither b, nor c. The support of bc is 2, because
there are two transactions (1 and 3) that contain c, and do
not contain b.

2

2.2 Derivation of the Rules

Before we discuss the derivation rules for support in general, we first illustrate
the principle with an example.

Example 2.2 In the next drawing, a transaction database D over items a, b, c
is depicted as a set. The elements of the set are the transactions. The subset
marked with a (resp. b, c) consists of all transactions that contain the item a
(resp. b, c). In this diagram, the region of the transactions that contain abc is
filled.

abc abc abc

abc abc abc

abc abc

D
a b

c

As can be seen in the diagram,

supp(abc) = supp(a) − supp(ab) − supp(ac) + supp(abc) .

This equality is an instance of the inclusion-exclusion principle (Galambos and
Simonelli 1996). Since supp(abc) ≥ 0, the following holds:

supp(abc) ≥ supp(ab) + supp(ac) − supp(a) .

Notice that we can use this inequality to lower bound the support of abc if we
know the supports of all its strict subsets.

This procedure can be repeated for every generalized itemset G based on abc;
supp(G) can be written in function of the supports of the subsets of abc. In this
equality, supp(abc) is isolated, and supp(G) is lower bounded by 0. In this way,
we get 8 different derivation rules for the support of abc, one for each generalized
itemset based on it. 2

We now discuss the derivation rules in general. From the inclusion-exclusion
principle (Galambos and Simonelli 1996), we know that for a given generalized
itemset XY based on I,

supp(XY) =
∑

X⊆J⊆I

(−1)|J\X|supp(J) . (1)

4

Since the support of a generalized itemset is always larger than or equal to 0,
we derive

∑

X⊆J⊆I

(−1)|J\X|supp(J) ≥ 0 . (2)

We now isolate supp(I) in inequality (2):

(−1)|I\X|supp(I) ≥ −
∑

X⊆J⊂I

(−1)|J\X|supp(J) . (3)

Since for all X ⊆ J ⊂ I it holds that

−(−1)|I\X|(−1)|J\X| = (−1)|I\X|+|J\X|+1 = (−1)|I\J|+1 , (4)

we obtain the following theorem:

Theorem 2.3 Let X ⊆ I ⊆ I, and Y = I \ X, then,

supp(I) ≤
∑

X⊆J⊂I

(−1)|I\J|+1supp(J) if |I \ X| odd

supp(I) ≥
∑

X⊆J⊂I

(−1)|I\J|+1supp(J) if |I \ X| even
(5)

The rule (5) will be denoted RX(I). The bound itself; that is, the sum on
the right-hand side of the rule RX(I), will be denoted δX(I). Hence,

δX(I) =def

∑

X⊆J⊂I

(−1)|I\J|+1supp(J) .

Figure 1 shows all rules for the itemset abcd.
The different derivation rules can now be used to derive a bounding interval

on the support of an itemset. The greatest lower bound on I will be denoted
LB(I,D), and the least upper bound by UB(I,D). Thus, the derivation rules
bound the support of itemset I within the interval [LB(I),UB(I)].

Example 2.4 Consider the following database:

tid Items
1 a
2 b
3 c
4 a, b
5 a, c
6 b, c
7 a, b, c

supp(abc) ≥ 0

≤ supp(ab) = 2

≤ supp(ac) = 2

≤ supp(bc) = 2

≥ supp(ab) + supp(ac) − supp(a) = 0

≥ supp(ab) + supp(bc) − supp(b) = 0

≥ supp(ac) + supp(bc) − supp(c) = 0

≤ supp(ab) + supp(ac) + supp(bc)

− supp(a) − supp(b) − supp(c)

+ supp(∅) = 1

The rules above are the rules RX(abc) for X respectively abc, ab, ac, bc, a, b, c, ∅.
With the deduction rules we thus derive that the support of abc must be included
in the interval [0, 1]. 2

5

R∅ : supp(abcd) ≥ supp(abc) + supp(abd) + supp(acd) + supp(bcd)

− supp(ab) − supp(ac) − supp(ad)

− supp(bc) − supp(bd) − supp(cd)

+ supp(a) + supp(b) + supp(c) + supp(d)

− supp(∅)

Ra : supp(abcd) ≤ supp(a) − supp(ab) − supp(ac) − supp(ad)

+ supp(abc) + supp(abd) + supp(acd)

Rb : supp(abcd) ≤ supp(b) − supp(ab) − supp(bc) − supp(bd)

+ supp(abc) + supp(abd) + supp(bcd)

Rc : supp(abcd) ≤ supp(c) − supp(ac) − supp(bc) − supp(cd)

+ supp(abc) + supp(acd) + supp(bcd)

Rd : supp(abcd) ≤ supp(d) − supp(ad) − supp(bd) − supp(cd)

+ supp(abd) + supp(acd) + supp(bcd)

Rab : supp(abcd) ≥ supp(abc) + supp(abd) − supp(ab)

Rac : supp(abcd) ≥ supp(abc) + supp(acd) − supp(ac)

Rad : supp(abcd) ≥ supp(abd) + supp(acd) − supp(ad)

Rbc : supp(abcd) ≥ supp(abc) + supp(bcd) − supp(bc)

Rbd : supp(abcd) ≥ supp(abd) + supp(bcd) − supp(bd)

Rcd : supp(abcd) ≥ supp(acd) + supp(bcd) − supp(cd)

Rabc : supp(abcd) ≤ supp(abc)

Rabd : supp(abcd) ≤ supp(abd)

Racd : supp(abcd) ≤ supp(acd)

Rbcd : supp(abcd) ≤ supp(bcd)

Rabcd : supp(abcd) ≥ 0

Figure 1: Tight bounds on supp(abcd).

Notice that, based on the derivation (1)→(5), it is easy to see that the
difference between the bound δX(I) and the actual support of I is given by the
following proposition:

Proposition 2.5 Let X ⊆ I be itemsets, and Y = I \ X.

|supp(I) − δX(I)| = supp(XY) .

Example 2.6 We continue Example 2.4. The difference between the lower
bound δa(abc) = supp(ab) + supp(ac) − supp(a), and the support of abc is
1, which is indeed exactly the support of the generalized itemset abc. Similarly,
the bound δ∅(abc) equals the support of abc, and thus, supp(abc) = 0. 2

An important question now is whether the bounds are non-redundant. The
next corollary answers this question positively; for every derivation rule, there

6

exists a database for which only this rule gives the best bound. Therefore,
omission of the rule will result in a less tight interval.

Corollary 2.7 None of the rules RX(I) is redundant. For all itemsets X ⊆ I
there exists a database D such that RX(I) gives the unique best approximation
for the support of I.

Proof According to Proposition 2.5 the difference |supp(I) − δX(I)| is given
by supp(XY), with Y = I \ X. Consider now the database that contains one
transaction T (tid,X ′) for every subset X ′ 6= X of I. Hence, for every subset
X ′ 6= X of I, supp(X ′Y ′) = 1, with Y ′ = I \X ′, and supp(XY) = 0. Therefore,
using Proposition 2.5, we get that RX(I) gives the exact bound, while all other
rules RX′(I) are 1 off. 2

2.3 Completeness of the Rules

If for each subset J ⊂ I, the support is given, then the rules RX(I) provide
bounds on the support of I. But how good can we expect the bounds to be?
Can they still be improved? The next theorem answers this question negatively;
the bounds derived by the rules are the best ones possible. We show that the
bounds [LB(I),UB(I)] on the support of I are always tight.

Theorem 2.8 (Calders 2003b) For every itemset I ⊆ I, the rules {RX(I) |
X ⊆ I} are sound and complete for deducing the tight lower and upper bound
on the support of I in D based on the supports of all strict subsets of I in D.

Example 2.9 We continue Example 2.4. Based on

supp(∅) =7, supp(a) =4, supp(b) =4, supp(c)=4,
supp(ab)=2, supp(ac)=2, supp(bc)=2,

the rules RX(abc) allow to derive the bounds [0, 1] on the support of abc. These
bounds are tight, since this interval cannot be made smaller. Indeed, the database
in Example 2.4 shows that supp(abc) = 1 is possible, and the following database
shows that also the lower bound supp(abc) = 0 is possible. Thus, the interval
[0, 1] cannot be made smaller, as this would result in the exclusion of at least
either 0 or 1.

tid Items tid Items
1 a, b 5 b, c
2 a, b 6 b, c
3 a, c 7
4 a, c

2

Theorem 2.8 shows that the interval deduced by the rules cannot be made
smaller. This statement, however, does not necessarily mean that every number
in the derived interval is possible as support. The next theorem does establishes
this fact.

Theorem 2.10 (Calders 2003b) Let I be an itemset, and D a transaction data-
base. For every integer s in the interval [LB(I,D),UB(I,D)], there exists a
database D′ such that for all strict subsets J of I, supp(J,D′) = supp(J,D),
and supp(I,D′) = s.

7

3 Non-Derivable Itemsets

Based on the deduction rules, it is possible to generate a summary of the set
of frequent itemsets. Suppose that the deduction rules allow to deduce the
support of an itemset I exactly, i.e. LB(I,D) = UB(I,D). Then, there is no
need to explicitly count the support of I which requires a complete database
scan over D. Indeed, if we need the support of I, we can simply derive it
using the deduction rules. We call all itemsets, of which we can perfectly derive
the support, Derivable Itemsets in D (DI), all other itemsets are called Non-
Derivable Itemsets in D (NDIs). The set of NDIs is denoted NDI. We show in
this section that the set of frequent NDIs allows to compute the supports of all
other frequent itemsets, and as such, forms a condensed representation (Mannila
and Toivonen 1996) of the frequent itemsets. To prove this result, we first
present some important properties of the NDIs.

3.1 Properties of NDIs

First, we show that the width of the intervals computed by the deduction rules,
halve every loop. That is, given an itemset I and an item a not in I, the width
of the interval for Ia will be at most half of the width of the interval for I.

Theorem 3.1 Let I ⊆ I be an itemset, and a ∈ I \ I an item. Then

(UB(Ia,D) − LB(Ia,D)) ≤
1

2
(UB(I,D) − LB(I,D))

Proof Let X ⊆ I, Y = I \X, and let a be an item not in I. The proof is based
on

supp(XY) = supp(XaY) + supp(XY a) .

From Proposition 2.5 we know that supp(XY), with Y = I \X, is the difference
between the bound δX(I) computed by RX(I) and the actual support of I. Let
now X ⊆ I be such that |supp(I) − δX(I)| is minimized. Then, the width of
the interval [LB(I),UB(I)] is at least 2 · supp(XY). Furthermore, RX(Ia) and
RXa(Ia) are a lower and an upper bound on the support of Ia (if |Ia \ Xa|
is odd, then |Ia \ X| is even and vice versa), and these bounds on Ia differ
respectively supp(XaY) and supp(XY a) from the support of Ia in D. When
we combine these observations, we get:

(UB(Ia) − LB(Ia)) ≤ supp(XaY) + supp(XY a)

= supp(XY)

≤
1

2
(UB(I) − LB(I))

2

Example 3.2 Consider the following database and bounds for ab.

8

tid Items tid Items
1 a, b 5 b, c
2 a, b 6 b, c
3 a, c 7
4 c

supp(ab) ≥ 0

≤ supp(a) = 3

≤ supp(b) = 4

≥ supp(a) + supp(b)

−supp(∅) = 0

Therefore, for ab we have the interval [0, 3]. The upper bound δa(ab) = 3 is
the closest to the actual support of ab. The difference |supp(ab) − δa(ab)| is 1.
From this, we know that the interval for abc is at most of size 1, because this
interval width will be reached when using the bounds [δa(abc), δac(abc)] = [0, 1].
As predicted by Theorem 3.1, the width of the interval at least halves going from
ab to abc.

Theorem 3.1 gives us the following valuable insights.

Corollary 3.3 The width of the intervals exponentially shrinks with the size of
the itemsets. Hence, every set I with |I| > log2(|D|)+1 must be derivable in D.

Proof For the singleton sets the bounds are [0, |D|]. Let I = {i1, . . . , in}.
Because of Theorem 3.1,

|UB(I) − LB(I)| ≤
1

2
(UB(I \ {i1}) − LB(I \ {i1}))

≤
1

4
(UB(I \ {i1, i2}) − LB(I \ {i1, i2}))

≤ . . .

≤
1

2n−1
(UB({in}) − LB({in})) =

|D|

2n−1
.

Thus, if |I| ≥ log2(|D|) + 2, then

(UB(I) − LB(I)) ≤
|D|

2log
2
(|D|)+1

=
1

2
.

Since the bounds are integers, UB(I) must equal LB(I). 2 This remarkable
fact is a strong indication that the number of large NDIs will be very small.
This reasoning will be supported by the results of the experiments.

Corollary 3.4 (Monotonicity) Let J ⊆ I be itemsets. If J is a DI, then I is
a DI as well.

Proof Since J is a DI, by definition, UB(J) − LB(J) = 0. By Theorem 3.1,
adding the elements of I \ J to J , halves the interval |I \ J | times. Hence, the
width of the interval for I must be 0 as well. 2

Corollary 3.5 If δX(I) equals the support of I, then all supersets Ia of I will
be DIs, with

supp(Ia) = δX(Ia) = δXa(Ia) .

9

Proof The reasoning is very similar to the one used in the proof of Theorem 3.1.
If one of the rules RX(I) gives the exact support for I, then supp(XY) = 0,
Y = I \ X. Since

0 = supp(XY) = supp(XaY) + supp(XY a) ,

this implies
supp(XaY) = supp(XY a) = 0 .

Hence, both RX(Ia) and RXa(Ia) give the exact support of Ia. 2

We will use this observation to avoid checking too many rules. More specif-
ically, let I be an NDI, i.e. LB(I) 6= UB(I), then, we store these bounds and
we count the support of I. After that, if it turns out that supp(I) = LB(I) or
supp(I) = UB(I), we already know that all supersets of I are derivable, without
computing their bounds.

Example 3.6 Consider the following database. Suppose that the set ab is gen-
erated as a candidate. The bounds on the support of ab are given on the right.

tid Items tid Items
1 a 5 a, b, c
2 a 6 b
3 a 7 b
4 a, b

supp(ab) ≥ 0

≤ supp(a) = 5

≤ supp(b) = 4

≥ supp(a) + supp(b)

−supp(∅) = 2

The bounds for ab are thus [2, 4], and hence ab is non-derivable, and needs to
be counted. After we counted ab, however, we see that the support of ab equals
the lower bound δ∅(ab) = 2. Then, according to Corollary 3.5, the superset abc
of ab must be derivable, with bounds [δc(abc), δ∅(abc)]. Indeed,

δc(abc) = supp(ac) + supp(bc) − supp(c) = 1

δ∅(abc) = supp(ab) + supp(ac) + supp(bc)

−supp(a) − supp(b) − supp(c) + supp(∅) = 1

The reason for this is that supp(ab) = δ∅(ab) implies that supp(ab) = 0. There-
fore, also the support of abc and abc must be zero, and hence δ∅(abc) = δc(abc) =
supp(abc).

3.2 Condensed Representation Based on NDIs

A Condensed Representation of frequent sets is, loosely speaking, a subset of
F , completed with the supports, that allows for reconstructing F . For exam-
ple, suppose that supp(a) = supp(ab) = supp(abc) = 10, and that the support
threshold is 5. Then, a, ab, and abc are in the collection of frequent itemsets.
However, it is easy to see that supp(abc) = supp(a) = 10, implies that ab must
be frequent as well, and that its support must equal 10. Therefore, we can
leave ab out of the collection, and still have the same information about the
frequent itemsets. Hence, a condensed representation of the frequent itemsets is
in fact a reduced collection of itemsets that still contains the same information.

10

Notice that Mannila and Toivonen (1996) introduced the notion of a condensed
representation in a slightly more general context. There already exist different
proposals for condensed representations. The best-known representation is the
closed sets representation (Pasquier et al. 1999). In this representation, if two
sets I ⊂ J have the same support, I is not stored in the condensed representa-
tion. Later on in the paper we will give the intuition behind this representation.

Thus, based on a condensed representation, for each itemset I, we must be
able to (a) decide whether I is frequent, and (b) if I is frequent, produce its
support. Clearly, from this point of view, a condensed representation needs to
be defined with respect to a constructive procedure that performs extraction of
supports from representations.

Theorem 3.7 For every database D, and every support threshold σ, let

NDIRep(D, σ) =def

{

(I, supp(I,D))
∣

∣

∣

LB(I,D) 6= UB(I,D),
supp(I,D) ≥ σ

}

.

NDIRep(D, σ) is a condensed representation for the frequent itemsets; that is,
for each itemset I not in NDIRep(D, σ), we can decide whether I is frequent,
and if I is frequent, we can exactly derive its support from NDIRep(D, σ).

Proof Base case I = ∅ is always an NDI, and hence its support is in the
representation NDIRep(D, σ), or it is infrequent.

General case Suppose we know of each subset J of I whether it is frequent,
and if J is frequent, we know supp(J) exact. If one of the subsets is infrequent,
I must be infrequent as well. If all subsets are frequent, then we know all their
supports. These supports allow us to apply the deduction rules and to derive
bounds [l, u] on the support of I. If l = u, we know the support of I exactly.
If l 6= u, then I is an NDI, and thus either I is in NDIRep(D, σ), together with
its support, or I is infrequent. 2

4 The NDI-Algorithm

Based on the results in the previous section, Calders and Goethals (2002)
have proposed a level-wise algorithm to find all frequent NDIs. Since derivability
is monotone, we can prune an itemset if it is derivable. This gives the NDI-
algorithm as shown in Algorithm 1. The correctness of the algorithm follows
from the results in Theorem 3.1, Corollary 3.3, Corollary 3.4, and Corollary 3.5.

The NDI-algorithm is based on the Apriori-algorithm. We start with the
singleton itemsets as the first candidates on line 1. On lines 2-4, we set the
bounds for the singleton itemsets to [0, |D|]. For an itemset I, once bounds
on it are computed, I.l will hold the lower bound, and I.u the upper bound
on its support. In the loop from line 5 to 24, ever larger sets are generated,
until no new candidates are generated. C` holds the candidates for the `-th
loop iteration. Hence, in the `-th loop iteration, the candidates of size ` are
counted, in one scan over the database (line 6). In order to make the counting
more efficient, index structures like a trie can be used to store the itemsets.
After the candidates are counted, F` holds the frequent ones (line 7). These
sets in F` are all frequent NDIs (line 8). In lines 9 to 22, the new candidates
are generated, starting from F`. First of all, we will only use the itemsets I in

11

Algorithm 1 The NDI algorithm

Require: Database D, threshold σ.
Ensure: NDIRep(D, σ).
1: ` := 1; NDIRep := {}; C1 := {{i} | i ∈ I};
2: for all I in C1 do
3: I.l := 0; I.u := |D|;
4: end for
5: while C` not empty do
6: Count the supports of all candidates in C` in one pass;
7: F` := {I ∈ C` | supp(I,D) ≥ σ};
8: NDIRep := NDIRep ∪ F`;
9: Gen := {};

10: for all I ∈ F` do
11: if supp(I,D) 6= I.l and supp(I,D) 6= I.u then
12: Gen := Gen ∪ {I};
13: end if
14: end for
15: PreC`+1 := AprioriGenerate(Gen);
16: C`+1 := {};
17: for all I ∈ PreC`+1 do
18: Compute bounds [l, u] on the support of I;
19: if l 6= u and u ≥ σ then
20: I.l := l; I.u := u;C`+1 := C`+1 ∪ {I};
21: end if
22: end for
23: ` := ` + 1;
24: end while

AprioriGenerate is the standard procedure of the Apriori-algorithm to generate
new candidates. Thus, the set AprioriGenerate(Gen) equals {I ∈ I | |I| =
i + 1,∀i ∈ I : I \ {i} ∈ Gen}.

F` such that the support of I does not equal the lower bound I.l nor the upper
bound I.u. We call these sets generating sets, and they are stored in Gen in lines
9 to 14. Because of Corollary 3.5, every superset of a set in F` \ Gen must be
derivable. On line 15, we use the standard Apriori candidate generation function
to generate new candidates. Since in the NDI-algorithm we still have to evaluate
the bounds, these sets generated by the standard Apriori generation procedure,
will be called pre-candidates (line 15). On lines 16 to 22, the pre-candidates are
further pruned using the deduction rules. For every pre-candidate I, the rules
are evaluated (line 18). Calders and Goethals (2005b) provide more details on
how this rule evaluation can be optimized. If the lower bound does not equal
the upper bound, then I is an NDI. Furthermore, if u < σ, then I is certainly
infrequent. Hence, I is a candidate for the next iteration only if u ≥ σ and
l 6= u. For the candidates I, the lower and upper bounds are stored, and they
are added to C`+1, the set of candidates for the next iteration (line 20). The loop
ends when no new candidates were generated. In that case, NDIRep contains
all frequent NDIs.

12

5 Optimizations

5.1 Limiting the Derivation Depth

The main disadvantage of the algorithm proposed in the last section is that
computing the results of all derivation rules can be very hard for large itemsets.
Fortunately, due to Corollary 3.3, we know that the non-derivable itemsets, for
which these rules need to be evaluated, are small themselves.

Nevertheless, we could overcome this problem by restricting to the derivation
with rules of limited depth. More specifically, to those rules RX(I), where |I\X|
is at most a predefined constant k.

We call an itemset I an NDI for depth k if its support can be deduced by
using rules up to depth k only; i.e., LBk(I) = UBk(I). The following lemma
states that the the monotonicity of derivability for depth k still holds.

Lemma 5.1 Let I ⊆ J be itemsets. If I is derivable at depth k, then J is
derivable at depth k as well.

Proof Since I is derivable for depth k, there must be subsets X and X ′ of I,
with |I \ X| and |I \ X ′| at most k, such that

δX(I) = δX′(I) = supp(I) ,

one of |I \X| and |I \X ′| is even, the other one odd. Without loss of generality
we assume that |I \ X| < |I \ X ′|. Hence, |I \ X| is at most k − 1. Let now
I ∪ {j} be a superset of I. Because δX(I) equals supp(I), Corollary 3.5 gives

supp(I ∪ {j}) = δX(I ∪ {j}) = δX∪{j}(I ∪ {j}) .

It is now easy to see that δX(I ∪ {j}) and δX∪{j}(I ∪ {j}) are a lower and an
upper bound on supp(I ∪ {j}) of depth at most k that both equal the support
of I ∪ {j}. As such, LBk(I ∪ {j}) = UBk(I ∪ {j}). 2

Unfortunately, one property of NDI’s no longer holds for NDI’s for depth k.
For a non-derivable itemset I, with supp(I) = LBk(I) or supp(I) = UBk(I),
it can no longer be derived that all supersets of I are derivable itemsets. The
reason for this is simple: suppose I equals a bound δX(I). Then, Corollary 3.5
essentially says that both the bounds δX(I ∪ {j}) and δX∪{j}(I ∪ {j}) must
equal the support of I ∪ {j}. The bound δX(I ∪ {j}), however, has a depth of
one higher than the depth of the bound δX(I) for I. Thus, if the depth of δX(I)
is k, the depth of δX(I ∪ {j}) is k + 1. Because of this, I ∪ {j} is guaranteed
to be derivable for depth k + 1, but not for depth k. The next example shows
that this case can indeed happen in practice.

Example 5.2 Consider the following database D. The table on the right gives
the lower and upper bounds for depth 2 and depth ∞, and the supports for the
itemsets.

tid Items
1 a
2 b
3 a, b
4 a, c
5 b, c
6 a, b, c

LB2 UB2 LB UB supp
a 0 6 0 6 4
b 0 6 0 6 4
c 0 6 0 6 3
ab 2 4 2 4 2
ac 1 3 1 3 2
bc 1 3 1 3 2
abc 1 2 1 1 1

13

Notice that, even though supp(ab) = LB2(ab), abc is not derivable for depth 2.
For depth 3, however, abc s derivable. 2

Notice that because this property of non-derivable itemsets no longer holds for
derivability for depth k, some care is needed with the optimization in line 11 of
the NDI-algorithm in Algorithm 1. If we are mining up to depth k, only for sets
I with |I| ≤ k − 1, we are sure that the supersets are non-derivable for depth k
if the test

if supp(I,D) 6= I.l and supp(I,D) 6= I.u then

fails (the maximal depth of a bound for a set I is |I|). Therefore, when we
restrict the depth of the rules to k, line 11 of the algorithm becomes:

if (supp(I,D) 6= I.l and supp(I,D) 6= I.u) or (|I| ≥ k) then

5.2 Halving Intervals at Minimal Cost

A disadvantage of limiting the derivation depth is that we lose the guarantee
that the interval size halves in each step. That is, Corollary 3.3 no longer holds
in this case, since not all rules are evaluated anymore, and thus, it is no longer
guaranteed that the rule that gives the best bound is computed.

Another solution, however, can still maintain the halving of the interval
sizes while only evaluating two rules per itemset. The procedure is based on
Proposition 2.5.

First we introduce some notations. Let J be an itemset. We denote the
interval on the support of J that can be computed by the deduction rules by
[J.l, J.u]. Furthermore, we identify the sets J.Xl and J.Xu that index the rules
that caused these bounds, that is, the subsets J.Xl and J.Xu of J , such that
δJ.Xl

(J) = J.l, and δJ.Xu
(J) = J.u.

Given a pre-candidate I, we compute bounds on its support as follows: first,
we select the subset J = I \ {i} of I, and the set X, such that X = J.Xl, or
X = J.Xu, and the difference |supp(J)− δX(J)| is minimal among all subsets J
and such sets X. Thus, in fact, among all subsets J = I \ {i} of I, we select the
one with the best bound, together with the set that indexes this bound. Notice
that, according to Proposition 2.5, the difference |supp(J) − δX(J)| is exactly
the support of XY , with Y = J \ X.

The bounds on I are computed with the rules RX(I) and RXi(I). Notice
that, if the first rule is an upper bound, the second one must be a lower bound
and vice versa. We assume, without loss of generality, that RXi(I) provides an
upper bound, and RX(I) a lower. Thus, these two rules compute an interval on
the support of I. Let I.l be the lower bound, and I.u the upper bound; that is,
I.l = δX(I), and I.u = δXi(I). We claim that the size of this interval [I.l, I.u]
is at most half the size of the interval of any of its subsets I \ {i}. Indeed, from
Proposition 2.5, it follows that

|supp(J) − δX(J)| = supp(XY) .

Furthermore,

supp(XY) = supp(XY i) + supp(XiY)

= (supp(I) − δX(I)) + (δXi(I) − supp(I))

= I.u − I.l

14

Because J and X where selected as to minimize |supp(J)−δX(J)|, every interval
of any subset of I has a width of at least 2 · |supp(J)−δX(J)|, and thus, I.u−I.l
is at most half the size of the interval of any of the subsets I \ {i}

To summarize, the complete procedure is the following:

• Find J = I \{i}, and X = J.Xl or X = J.Xu, such that |supp(J)−δX(J)|
is minimal.

• If |J\X| is even (δX(J) is an upper bound), I.Xl = X∪{i}, and I.Xu = X,
otherwise I.Xl = X, and I.Xu = X ∪ {i}.

• I.l = δI.Xl
(I), I.u = δI.Xu

(I). Notice that only two rules are evaluated to
find an interval for I.

• The support of I is computed in the next iteration (under the assumption
that I ends up in C`+1).

• After the support of I is computed, we do some bookkeeping: I.X is set
to I.Xl if supp(I) − I.l < I.u − supp(I), otherwise, I.X is set to I.Xu.
Put otherwise, I.X is the set that provided the best bound for I.

In the algorithm this adaptation results in a modification of step 18. We
replace step 18 with the following steps.

18a % Compute bounds [l, u] on support of I;
18b Let i := minargi∈I(|supp(I \ {i}) − δ(I\{i}).X(I \ {i})|)
18c J := I \ {i};
18d Calculate lI and uI with the rules RJ.X(I)

and RJ.X∪{i}(I);
18e if |I \ J.X| is even then I.Xl := J.X else I.Xl = J.X ∪ {i};
18f if |I \ J.X| is odd then I.Xu = J.X else I.Xu = J.X ∪ {i};

Furthermore, after we counted the support of a set I we have to do some book-
keeping to assign to I.X the right set. This can, for example, be done in the
loop 11-13: we add the following lines in the loop 11-13, right after step 12:

12b if supp(I) − I.l < I.u − supp(I) then I.X := I.Xl

else I.X := I.Xu;

6 Generating F from NDIRep

Often, one is not only interested in the frequent NDIs, but in all frequent
itemsets. The procedure DeriveAll generates all frequent itemsets together
with their supports, starting from the representation NDIRep. In Figure 2, a
straightforward procedure to derive all itemsets has been given. The procedure
is basically as follows: as long as there are itemsets I such that every strict
subset of I is confirmed to be frequent, and I is not yet confirmed as infrequent,
check I. These sets I are said to be in the border of the current collection of
found frequent itemsets. The border B−(S) of a set of itemsets S is formally
defined as follows:

B−(S) =def {I ⊆ I | ∀J ⊂ I : J ∈ S ∧ I /∈ S}

15

Input: NDIRep(D, σ), threshold σ.
Output: Set Fsupp(D, σ) = {(I, supp(I,D)) | I ∈ F(D, σ)}.

(2.1) DeriveAll(NDIRep, σ)
(2.2) C := B−(NDIRep); Checked := {};
(2.3) while C not empty do
(2.4) for all I ∈ C do
(2.5) Compute bounds [l, u] on the support of I;
(2.6) if l ≥ σ then Fsupp := Fsupp ∪ {(I, l)};
(2.7) Checked := Checked ∪ C;
(2.8) C := B−(NDIRep ∪ Fsupp) \ Checked;
(2.9) end while
(2.10) return F ;

Figure 2: The procedure DeriveAll to generate all frequent sets with their
supports from NDIRep.

In the procedure in Figure 2, the set C contains all sets that are not checked
yet, and that have every strict subset in F . In (2.4), (2.5), the bounds are
computed for every set in C in isolation. Indeed, there is no need to combine
the computation of the rules, since no scan over the database is required. If
l ≥ σ in (2.6), then I is certainly frequent. Since every frequent NDI is already
in NDIRep, I must be a frequent DI in that case. Also the other direction
obtains; if I is a frequent DI, then l ≥ σ. The set Checked holds the sets that
were generated, and that turned out to be infrequent. In the end, Checked will
contain exactly the negative border of F . The set Checked is maintained to
avoid that sets that fail are regenerated and evaluated every loop, over and over
again.

The simple procedure presented in Figure 2 can be improved using Corol-
lary 3.5. If we store, for every DI I, the rule RX(I) such that δX(I) =
l = u, then, for every superset I ∪ {a} of I, we only need to check the rule
RX∪{a}(I ∪ {a}); because of Corollary 2, I ∪ {a} must equal the bound com-
puted by that rule. This improvement requires only a little more bookkeeping,
but will result in huge time savings for large frequent DIs. Let I.X be the set
such that l = u = δI.X(I). We assume that I.X is nil if I is not a DI. In the
procedure in Figure 2 step (2.5) is replaced by the following steps:

(2.5a) % Calculate bounds on supp(I)
(2.5b) parent di := false;
(2.5c) for all i ∈ I do
(2.5d) Let J = I \ {i};
(2.5d) if J.X 6= nil then
(2.5e) % J is a DI, and thus I as well
(2.5f) I.X := {J.X ∪ {i}}
(2.5g) parent di := true; exit for
(2.5h) end for
(2.5i) if parent di = false then
(2.5j) Compute bounds [l, u] on the support of I;

16

(2.5k) else
(2.5l) l := δI.rule(I);

Notice also that if our main objective is to mine all frequent itemsets, we can
make the DeriveAll-procedure even less costly by doing some of the bookkeeping
already in the NDI-algorithm. In steps 6, 7 of Algorithm 1, all infrequent
NDIs in B−(NDIRep) can be identified, and after step 18, some of the DIs in
B−(NDIRep) can be identified. If we remember the rules that gave the best
lower and upper bound in step 20, we can also set I.X for the DIs on line 18,
and for the sets that are excluded from generation on line 11.

7 Related Work

7.1 Condensed Representations

In the literature, there exists already a number of condensed representations
for frequent itemsets. The most important ones are the closed sets and the free
sets (or generators) representations. Besides the free and the closed sets, there
also are the disjunction-free, and generalized disjunction-free itemsets. Calders
and Goethals (2003) give a complete empirical and theoretical comparison of all
representations.

Free sets (Boulicaut et al. 2000) or Generators (Pasquier et al.
1999; Kryszkiewicz 2001) are itemsets that don’t have a subset with the
same support as themselves. Boulicaut et al. (2000) have shown that freeness
is anti-monotone; every subset of a free set must be free as well. A very useful
property shown by Boulicaut et al. (2000) is the following: a rule I → a is said
to hold in database D if every transaction that contains I, also contains a. A
set I is free if and only if no rule I \ {i} → i with i ∈ I holds.

Boulicaut et al. (2000) have shown that the collection of free sets together
with the infrequent sets in its border forms a condensed representation of the
frequent sets. Similarly, also the frequent free sets together with the frequent
sets in the border form a condensed representation.

Disjunction-free sets (Bykowski and Rigotti 2001; Bykowski and
Rigotti 2003; Kryszkiewicz 2001) and Generalized Disjunction-free
sets (Kryszkiewicz and Gajek 2002b; Kryszkiewicz and Gajek 2002a)
A set I is called disjunction-free if there do not exist two items i1, i2 in I such
that

supp(I) = supp(I \ {i1}) + supp(I \ {i2}) − supp(I \ {i1, i2}) (6)

Again, this equality can be restated as a rule. A disjunctive rule I \ {i1, i2} →
i1∨i2 is said to hold in a database D if every transaction that contains I \{i1, i2}
also contains at least one of i1 and i2. The equality (6) now holds if and only
if the disjunctive rule I \ {i1, i2} → i1 ∨ i2 holds. This rule corresponds to
RI\{i1,i2}(I). Notice that free sets are a special case of the disjunctive-free sets,
namely with i1 = i2. The disjunction-free sets representation consists of the
collection of frequent disjunction-free sets, together with a part of its border.

The generalized disjunction-free sets are a generalization, where the number
of disjuncts is unlimited. A set I is said to be generalized disjunction-free if
there does not exist a subset Y of I such that the rule I \ Y →

∨

Y holds.
Kryszkiewicz and Gajek (2002b) have shown that the rule I \ Y →

∨

Y holds

17

if and only if the equality supp(I) = δI\Y (I) does. Therefore, the generalized
disjunctive rules and the NDIs are closely connected. The main difference is
in the fact that the generalized disjunction-free sets representation is not based
on lower and upper bounds, and that part of the border of the generalized
disjunction-free sets needs to be stored as well. Calders and Goethals (2003)
have shown that both the generalized disjunction-free representation and the
NDI representation can be seen as different instantiations of a common unifying
framework.

Closed itemsets (Pasquier et al. 1999) Probably the most well-known
representation is the closed itemset representation (Boulicaut and Bykowski
2000; Pei et al. 2000; Zaki and Hsiao 1999). Closed itemsets can be introduced
as follows: the closure of an itemset I is the largest superset of I such that its
support equals the support of I. This superset is unique and is denoted cl(I). An
itemset is called closed if it equals its closure. Pasquier et al. (1999) have shown
that the frequent closed sets form a condensed representation of the frequent
itemsets. An alternative definition of the closed sets is as follows (Bastide et al.
2000): two itemsets I and J are called equivalent if they are in the exact same set
of transactions. This equivalence divides the collection of itemsets into disjoint
equivalence classes. Every of these equivalence classes can be characterized by
its unique maximal element (w.r.t. set inclusion). These maximal elements
are exactly the closed itemsets. Notice incidently that the minimal elements of
these equivalence classes (which are not unique within the classes), are the free
sets.

7.1.1 Relations Between the Representations

In the experimental section we will compare the different condensed represen-
tations on different real-life datasets. We compare the following illustrative set
of condensed representations:

1. FreeRep: is based on the free sets. Because the frequent free sets alone do
not form a representation, the frequent sets in their border are added to
the representation.

2. DFreqRep (Bykowski and Rigotti 2003) and DFreeRep (Kryszkiewicz 2001):
are based on the disjunction-free sets. Again, only the frequent disjunction-
free sets do not form a representation. The representations DFreqRep and
DFreeRep are the frequent disjunction free sets with respectively the fre-
quent sets in the border and the free sets in the border.

3. GDFreqRep and GDFreeRep (Kryszkiewicz and Gajek 2002b): similarly
as the representations based on the disjunction-free sets, GDFreqRep and
GDFreeRep are the frequent generalized disjunction-free sets plus respec-
tively the frequent sets in the border and the free sets in the border.

4. ClosedRep (Pasquier et al. 1999): is the closed itemsets representation.

5. NDIRep: is the non-derivable itemsets representation.

Calders (2003a) gives an exhaustive overview of all representations. Notice that
the representations FreeRep and GDFreqRep that we propose here are improved
variations of existing proposals (Boulicaut et al. 2003; Kryszkiewicz and Gajek
2002b).

18

D =

tid Items tid Items
1 a, b, c, d, e 9 b, c, d
2 a, b, d, e 10 b, c, e
3 a, b, d, e 11 c, d, e
4 b, c, d, e 12 b, c
5 b, c, d, e 13 b, d
6 a, b, e 14 c, d
7 a, c, d 15 d, e
8 a, c, e 16 b

abcde

abcd abce abde acde bcde

abc abd abe acd ace ade bcd bce bde cde

ab ac ad ae bc bd be cd ce de

a b c d e

1

1

1

11

22

3

33

3

4 4 4 45

4 43 5 6 7 7 7 6 7

6 1011 1011

16

Free

Disj.-Free

Gen. Disj.-Free

abe Closed

abc Not closed

Infrequent

3-Frequent

NDI

DI

Figure 3: Free, Disjunction-Free, Generalized Disjunction-Free, Closed, and
Non-Derivable sets

Theoretically, the relations between the sizes of the different condensed rep-
resentations are as follows:

|ClosedRep| ≤ |FreeRep|
|NDIRep| ≤ |GDFreqRep| ≤ |DFreqRep| ≤ |FreeRep|

|GDFreeRep| ≤ |DFreeRep|

Calders and Goethals (2003) have given the complete proofs of these relations.
Basically, the free sets, the disjunction-free sets and the generalized disjunction-
free sets can be seen as variations of the NDI-representation, where the deriva-
tion depth is respectively 1, 2, and unbounded.

Example 7.1 Consider the database D that is given in Figure 3. In the lat-
tice in Figure 3, different sets of itemsets are indicated for easy reference. The
free sets, disjunction-free sets, and generalized disjunction free sets are indicated
with grey boxes. The free sets are a superset of the disjunction-free sets, which
are on their turn a superset of the generalized disjunction-free sets. The gen-
eralized disjunction free sets are indicated in the darkest shade of grey. Then,

19

the disjunction-free sets that are not generalized disjunction-free in the middle
shade, and finally the free sets that are not disjunction-free in the lightest shade.
The sets below the horizontal line are non-derivable, the ones above the line are
derivable. The closed itemsets are in bold. The curve separates the frequent
(below) from the infrequent (top) sets. The minimal support in this example is
3.

This example clearly illustrates the aforementioned properties of the repre-
sentations. First of all, the free sets are a superset of the disjunction free sets,
which, on their turn are a superset of the generalized disjunction-free sets. Sec-
ondly, the frequent free (disjunction-free, generalized disjunction-free) sets are
not sufficient to have a condensed representation. For example, both abe and
ace are not frequent generalized-disjunction free. Based on a condensed repre-
sentation, one should be able to see whether a set is frequent or not. Based on
the frequent generalized disjunction-free sets alone, however, it is not possible
to differ between these two sets. Therefore, a part of the border has to be added
in order to get a representation. In the case of the generalized disjunction free
sets, we can choose between the frequent sets in the border (abd, abe, ade, bcd,
bce, bde, and cde) to get GDFreqRep, or the free sets in the border (abc, abd,
acd, ace, ade, bcd, bce, bde, cde) to get GDFreeRep.

Notice that the generalized disjunction-free sets are a subset of the non-
derivable itemsets. This is true in general. The representations based on the gen-
eralized disjunction-free sets, however, are often larger than the NDI-representation
because of the need to add a part of the border. For the GDFreqRep representa-
tion, for example, it can even be shown that it is always at least as large as the
NDI-representation.

A third important observation is the relation between the free sets and the
closed sets. One equivalence class of itemsets appearing in the same set of trans-
actions is the class {abd, ade, abde}. The unique maximal sets in the equivalence
classes are the closed sets. For the given class this is abde. This class also shows
that for the minimal sets in a class, which are the free sets, are not unique (abd
and ade). Therefore, for every closed itemset there are one or more free sets.
Furthermore, in the free sets representation, additionally, a border has to be
stored. Therefore, the closed itemsets representation is always smaller than the
free sets representation. 2

7.1.2 Empirical evaluation of the sizes of the condensed representa-
tions

In Figure 4, the sizes of the different condensed representations have been given
for different support thresholds and datasets. For more information on the
datasets, we refer to the experiments section 8.

Except for BMS-Webview-1, the NDI-representation is always among the
best representations, together with our new variant of the generalized disjunc-
tion free representation, GDFreqRep. Only for the very sparse dataset BMS-
Webview-1, the closed itemsets are significantly in smaller numbers than all the
other representations. Also GDFreeRep shows some better results here. Never-
theless, GDFreeRep performs significantly worse for the, also sparse, synthetic
dataset T40I10D100K than the others. The closed itemsets perform significantly
worse on the dense datasets Connect-4 and PUMSB. As shown theoretically,
it can be seen that FreeRep is always worse than ClosedRep and DFreqRep.

20

104

105

106

107

101

N
um

be
r o

f f
re

qu
en

t i
te

m
se

ts

Minimum Support

NDI
Free

Dfree
Dfreq

GDfree
GDfreq
Closed

(a) BMS-Webview-1

103

104

105

106

107

102103

N
um

be
r o

f f
re

qu
en

t i
te

m
se

ts

Minimum Support

NDI
Free

Dfree
Dfreq

GDfree
GDfreq
Closed

(b) BMS-POS

102

103

104

105

106

107

108

101102103104

N
um

be
r o

f f
re

qu
en

t i
te

m
se

ts

Minimum Support

NDI
Free

Dfree
Dfreq

GDfree
GDfreq
Closed

(c) T40I10D100K

103

104

105

101102103

N
um

be
r o

f f
re

qu
en

t i
te

m
se

ts

Minimum Support

NDI
Free

Dfree
Dfreq

GDfree
GDfreq
Closed

(d) Mushroom

103

104

105

106

107

108

109

102103104105

N
um

be
r o

f f
re

qu
en

t i
te

m
se

ts

Minimum Support

NDI
Free

Dfree
Dfreq

GDfree
GDfreq
Closed

(e) Connect-4

102

103

104

105

106

107

108

104

N
um

be
r o

f f
re

qu
en

t i
te

m
se

ts

Minimum Support

NDI
Free

Dfree
Dfreq

GDfree
GDfreq
Closed

(f) PUMSB

Figure 4: Size of condensed representations

21

DFreqRep on its turn is worse than GDFreqRep, which is always larger than
NDIRep, although these differences are not always very large. Also, DFreeRep
is worse than GDFreeRep. The differences between DFreqRep and DFreeRep
on the one hand, and GDFreqRep and GDFreeRep on the other hand are small
most of the time. Only in the BMS-Webview-1, DFreeRep and GDFreeRep are
significantly better for low thresholds, and in the T40I10D100K, DFreqRep and
GDFreqRep are better. These differences can be explained by the fact that they
store a different part of the border. Calders and Goethals (2003) have given a
more in-depth study of these representations.

7.2 Combinatorics

7.2.1 Approximate Inclusion-Exclusion

Probabilists and statisticians frequently use the inclusion-exclusion bounds to
approximate the probability of a union of finitely many events(Jordan 1927;
Bonferroni 1936). The inclusion-exclusion principle allows to compute the num-
ber of elements in the union of sets S1, . . . , Sn given the numbers of elements in
all possible intersections Si1 ∩ . . . ∩ Sik

, 1 ≤ i1, . . . , ik ≤ n, k ≤ n. If for some
of these intersections, the number of elements is missing, we can only compute
an approximate bound on the size of the union S1 ∪ . . . ∪ Sn. It is exactly this
type of problems that is studied in approximate inclusion-exclusion (Galambos
and Simonelli 1996; Kahn et al. 1996; Melkman and Shimony 1997). Melkman
and Shimony (1997) have studied the case in which only the count of the num-
ber of items in S1 ∩ . . . ∩ Sn is missing. In this case, the bounds on the union
S1 ∪ . . . ∪ Sn provide us with bounds on the intersection S1 ∩ . . . ∩ Sn. Both
problems are alike, and hence many of the results of Melkman and Shimony
also apply to our framework. Actually, the completeness and non-redundancy
of the inclusion-exclusion rules RX(I) for the support of the itemset I are also
implicitly proven by Melkman and Shimony.

Bonferroni inequalities are a specific family of combinatorial inequalities for
approximate inclusion-exclusion when all intersections up to a fixed constant are
known (Galambos and Simonelli 1996). An interesting application of Bonferroni
inequalities to data mining is described by Jaroszewicz and Simivici (2002), and
Jaroszewicz et al. (2002). Based on the supports of some itemsets, bounds on
the supports of arbitrary boolean expressions are computed using these Bonfer-
roni inequalities. The bounds obtained by them are however not tight.

7.2.2 Fréchet Bounds

Fréchet bounds (Fréchet 1951) are often used in stochastic processes to estimate
an upper and/or a lower bound on the queue length in a queuing system with
two different but known marginal inter-arrivals times distributions of two types
of customers. The simplest form of the bounds is the following.

max(0, P (a) + P (b) − 1) ≤ P (ab) ≤ min(P (a), P (b))

The lower bound corresponds to the rule R∅(ab). The upper bounds are the
monotonicity rules Ra(ab) and Rb(ab).

22

7.2.3 Statistical Data Protection

In statistical databases the privacy of data is studied (Fienberg 1998; Dobra
and Fienberg 2000; Dobra and Fienberg 2001). In many situations it is common
to only provide aggregated data instead of giving the individual data records.
An example of this is census data, in which the individual data records are
protected, but at the same time aggregated values are published. Fienberg
(1998), and Dobra and Fienberg (2000), (2001) study the problem of computing
sharp upper and lower bounds on the cells of a multi-way contingency table,
given a set of marginal tables.

Most relevant for our work are the bounds for entries in dichotomous k-
dimensional tables, given all (k − 1)-dimensional marginals (Dobra 2002:54).
That is, the table has k binary-valued attributes, and the counts of all (k − 1)-
dimensional sub-tables are given. Actually, this case is similar to finding the
bounds on the frequency of an itemset of size k, given the frequencies of all
itemsets of size k − 1. For this case, Dobra derives very similar bounds using a
similar proof technique as we do for the non-derivable itemsets.

Most techniques developed in statistical data protection, however, are incom-
plete, or rely on computationally intensive iterative procedures. Furthermore, in
statistical data protection the goal is only to derive the bounds for one specific
table, where in our NDI-setting, we want to find all sets that can be derived
completely. Thus, the relation between our work and the work on statistical
data protection is restricted to the computation of tight bounds on the support
of one itemset.

7.3 Support Bounding

In MAXMINER, Bayardo (1998) uses the following rule to derive a lower bound
on the support of an itemset:

supp(I ∪ J) ≥ supp(I) −
∑

j∈J

drop(K, j)

with K ⊂ I, and drop(K, j) = supp(K)− supp(K ∪ {j}). The intuition behind
this rule is the following: drop(K, j) expresses how many transactions contain
K, but do not contain j. Hence, if we add the item j to the itemset K, the
support will decrease. How much the support drops from K to K ∪ {j}, is
expressed by drop(K, j).

∑

j∈J drop(K, j) is used as an estimate of the drop
from I to I ∪ J . Indeed, for every transaction T that does contain I, but does
not contain I ∪ J , there is at least one j ∈ J such that T does not contain
K ∪ {j}. Bayardo uses this rule when searching for the frequent itemsets of
maximal cardinality. The lower bound is used to jump from I to I ∪ J in the
search space whenever the lower bound on I∪J is at least as high as the support
threshold.

For K = I and J = {i1, i2}, this rule correspond to RI(I ∪ {i1, i2}). In
general, the rule used in MAXMINER can be derived from the deduction rules
RX(I). For example, let I = abcd, J = bcd, and K = ∅. The MAXMINER rule
can be derived from the rules R.(abcd) as follows:

3 · R∅(abcd) + 2 · Ra(abcd) + 2 · Rb(abcd) + 2 · Rc(abcd) + 2 · Rd(abcd)
+Rab(abcd) + Rac(abcd) + Rad(abcd) + Rbc(abcd) + Rbd(abcd)
+Rcd(abcd) + Rabc(abcd) + Rabd(abcd) + Racd(abcd) + Rbcd(abcd)

23

gives the MAXMINER rule

supp(abcd) ≥
supp(a) + supp(b) + supp(c) + supp(d) − 3 · supp(∅) .

In their PASCAL-algorithm, Bastide et al. (2000) use counting inference
to avoid counting the support of all candidates. The rule they are using to
avoid counting is based on our rule RI\{i}(I). In fact, the PASCAL-algorithm
is the Apriori-algorithm in which the counting of sets derivable with RI\{i}(I)
are not counted in the database. Notice that PASCAL can straightforwardly be
extended using all rules RX(I) for a candidate set I.

Another application of deduction rules, closely related to condensed repre-
sentations, is developed by Groth and Robertson (2001). Based on the obser-
vation that highly frequent items tend to blow up the output of a data mining
query by an exponential factor, the authors develop a technique to leave out
these highly frequent items, and to reintroduce them after the mining phase by
using a deduction rule, called the multiplicative rule. The multiplicative rule
can be stated as follows: let I, J be itemsets, then

supp(I ∪ J,D) ≥ supp(I,D) + supp(J,D) − supp(∅,D) .

This rule can be derived from the rules in our framework. For J = {a, b} for
example, the multiplicative rule corresponds to RI(I ∪ {a, b}).

Furthermore, Goethals et al. (2005) develops, based on the NDI support
bounding technique, a mechanism to prune derivable association rules.

8 Experiments

All experiments were performed on a 3GHz Pentium IV with 1Gb of main
memory. To empirically evaluate the proposed algorithms and deduction rules,
we performed several tests on five real-life datasets and one synthetic dataset.
These datasets are all well-known benchmarks for frequent itemset mining. The
BMS-Webview and BMS-POS datasets are click-stream data from a small dot-
com company that no longer exists. These two datasets were donated to the
research community by Blue Martini Software. The Pumsb-dataset is based
on census data, the Mushroom dataset contains characteristics from different
species of mushrooms. The Connect-4 dataset contains different game positions.
All these datasets are available from the FIMI repository1. The T40I10D100K
dataset was generated using the IBM synthetic data generator.

For each of these datasets, we performed 5 sets of experiments in which we
compared the following algorithms:

• Apriori: the standard algorithm.

• NDI: as described in Algorithm 1. All derivation rules are evaluated, i.e.,
the depth is set to ∞.

• NDI-All: the NDI algorithm followed by DeriveAll as described in Fig-
ure 2.

1http://fimi.cs.helsinki.fi/

24

• NDI-hamc: the NDI algorithm using the halving at minimal cost opti-
mization.

• NDI-hamc-All: the NDI-hamc algorihtm followed by DeriveAll.

The NDI algorithm is essentially breadth-first, and as such it is an extension
of the Apriori algorithm, in which the monotonicity check is replaced with the
derivation rules. Therefore, we performed several experiments to illustrate the
effect of this replacement. Note, however, there already exist numerous algo-
rithms that outperform Apriori (Goethals and Zaki 2004). Nevertheless, com-
paring NDI to Apriori nicely shows the improvements solely caused by the de-
duction rules. For fairness of comparison, all NDI implementations are based
on the Apriori implementation.

Every experiment was allowed to run for at most 15 minutes, and was termi-
nated otherwise. For each dataset, we present the following plots and statistics.

(a) plots the number of frequent itemsets produced by NDI, Apriori and NDI-
hamc.

(b) plots the time needed to produce these itemsets. Here, figures are also
shown for finding all frequent itemsets with NDI-All and NDI-hamc-All.

(c) shows the number of frequent non-derivable itemsets when only derivation
rules of limited depth were allowed to be used for computing the bounds
on the itemset supports. This experiment is repeated for three different
thresholds, i.e. the highest threshold we used in the experiments for that
respective dataset, the lowest threshold for which Apriori was able to
finish within time, and the lowest threshold for which NDI was able to
finish within time. (Note that the latter two can be the same, as for BMS-
POS.) Recall that using depth equal to 1 is equivalent with the number
of itemsets found by apriori.

(d) shows the time needed to produce these itemsets for each depth used.

(e) shows the distribution of the number of frequent itemsets w.r.t. the size
of the itemsets for apriori and for NDI, again for three different thresholds
as before.

(f) shows some simple statistics about the considered database in that Figure.
That is, the number of transactions, the size of the database (in number
of items), the average, minimum and maximum transaction length, the
number of different items, the average, minimum and maximum support
of all items.

Note that all figures have a logarithmically scaled y-axis.
The number of NDI’s. For high minimum support values, the number

of frequent non-derivable itemsets is not much different from the total num-
ber of frequent itemsets for the BMS-Webview-1, BMS-POS and T40I10D100K
datasets (Figures 5(a), 6(a) and 7(a)). This is mainly due to the small sizes of
the discovered itemsets. Indeed, small itemsets are not likely to be derivable,
as is also illustrated in (e).

When the threshold becomes small enough, however, the number of frequent
itemsets rises very quickly, while the number of frequent non-derivable itemsets

25

remains manageable. Again, this is mainly due to the itemset sizes. As explained
before, larger itemsets are very likely to be derivable (cfr. Corollary 3.3).

For the Mushroom, Connect-4, and PUMSB datasets, however, there is a
significant difference in the number of NDI’s already for high support values.
These dense datasets produce very large frequent itemsets, which is known to be
a major problem for frequent itemset mining (Goethals and Zaki 2004), while
this is exactly what NDI improves upon, as can be seen in Figures 8(e), 9(e)
and 10(e).

The performance of NDI. When comparing NDI and Apriori, one main
factor determines the difference in performance. Namely, NDI needs to count
the support of significantly less candidate itemsets. On the other hand, the
evaluation of the deduction rules causes some overhead. Most of the time,
however, this overhead is more than compensated by the gain obtained from
the reduction in the number of candidate itemsets. Of course, when the number
of frequent NDI’s is very close to the number of frequent itemsets, NDI will
turn out to perform a little slower than Apriori. This can be seen for both
the BMS-Webview-1 and T40I10D100K datasets and high minimum support
thresholds. For the other datasets or low support thresholds, the performance
improvements of NDI over Apriori are impressive.

The performance of DeriveAll. When all frequent itemsets are derived
after generating and counting all non-derivable itemsets, the experimental re-
sults show that significant improvements can be accomplished w.r.t. Apriori,
especially when the difference in the number of itemsets grows. This is clearly
due to the benefit of the support derivation techniques over brute force counting
in the database. This effect is nicely illustrated on the T40I10D100K dataset
where NDI-All starts outperforming Apriori as soon as the number of frequent
itemsets grows faster than the number of NDI’s (cfr. Figures 7(a) and 7(b)).

Limiting the derivation depth. In each Figure, plots (c) and (d) illus-
trate the effect of limiting the depth of the derivation rules (cfr. Section 5.1).
Note that points are omitted for the experiments which did not execute within
the allowed 15 minutes or when the derivation depth is larger than the size of
the largest candidate itemset.

Obviously, the overhead created by increasing the depth of the derivation
rules is also here most of the time negligible. This is mainly due to the fact that
most non-derivable itemsets are small. Indeed, derivation rules of higher depths
can only be evaluated for itemsets with a size at least that depth, of which there
are only a few (see also plot (e)).

The main cause of the performance improvements is due to the decrease in
the number of frequent NDI’s of that depth. This effect can be seen for depths
up to three or four, for all datasets, for almost all minimum support thresholds.

Figure 5(d), however, shows an interesting exception for the smallest thresh-
old. There, the performance improvement can not be attributed to a decrease in
the number of frequent NDI’s. The reason for this sudden performance increase
is due to a significant decrease in the number of candidate itemsets for which
the derivation rules need to be evaluated. More specifically, the supersets of a
non-derivable itemset can already be pruned when its support equals its lower
or upper bound and its cardinality is smaller than the derivation depth (cfr.
Section 5.1). As Figure 5(e) shows, there is a significant peak in the number
of non-derivable itemsets of size four, for which this optimization can only be
applied starting from derivation depth five.

26

Halving intervals at minimal cost. Surprisingly, NDI-hamc is almost al-
ways outperformed by NDI. Again, the difference in the number of non-derivable
itemsets is the main cause of this. As already explained in the comparison
between Apriori and NDI, also here, the overhead created by evaluating all
derivation rules is more that compensated by the decrease in the number of
non-derivable itemsets.

Even though the total number of itemsets generated by NDI-hamc is larger
than that number for NDI, most of the itemsets are still relatively small as com-
pared to the itemsets generated by Apriori. After all, the desired property that
the sizes of the derived intervals decrease exponentially for increasing itemset
size, still holds.

9 Conclusion

In this paper, we presented non-derivable itemsets (NDI’s) as an alternative to
mining all itemsets. Starting from a system of sound and complete deduction
rules, based on the inclusion-exclusion principle, bounds on the support of an
itemset can be derived. The collection of all frequent non-derivable itemsets
form a highly condensed representation of the frequent itemsets.

A nice property of the NDI’s is that their size is bounded by the logarithm
of the database size. This property is a strong indication that the non-derivable
itemsets, in general, will not be very large. This indication was indeed also
observed in the experiments. Using NDI’s allows the use of smaller minimum
support thresholds, even for mining dense datasets.

Also the connections between the NDI-representation and different other rep-
resentations was discussed. We showed how well-known optimization techniques
in frequent set mining can be expressed with the deduction rules.

An algorithm to mine all frequent non-derivable itemsets, called NDI, was
developed, and thoroughly tested. Although the condensed representation is
the main focus of the paper, we also presented an efficient method to derive
all frequent itemsets from the NDI-representation. In the experiments, differ-
ent parameters, such as the depth of the rules to be evaluated, and different
optimizations were tried. One of the most important conclusions from the ex-
periments was that the rules of limited depth already provide good bounds.
This observation is very important, since it indicates that with the simplest
rules, we already obtain significant pruning abilities, making the search for fre-
quent non-derivable itemsets a useful and tractable alternative to mining all
frequent itemsets.

There are still some important directions for future work. First of all, for
many of the condensed representations, approximate versions have been devel-
oped. E.g., the δ-free sets (Boulicaut et al. 2003) for the free sets, and the
condensed frequent-pattern bases (Pei et al. 2004) for the closed sets. It would
be interesting to consider approximate representations in the context of non-
derivable itemsets as well.

Another direction of future research is the integration of non-derivable item-
set mining with depth-first approaches. Obviously, a major problem with this
integration is that for the non-derivable itemsets, when considering a candidate,
the supports of all subsets are needed, while this is exactly what depth-first
approaches try to avoid. Calders and Goethals (2005a) already present some

27

103

104

105

106

107

101102

N
um

be
r o

f f
re

qu
en

t i
te

m
se

ts

Minimum Support

Apriori
NDI

NDI-hamc

(a)

10-1

100

101

102

101102

Ti
m

e
(s

ec
)

Minimum Support

Apriori
NDI

NDI-All
NDI-hamc

NDI-hamc-All

(b)

103

104

105

106

107

 2 4 6 8 10

N
um

be
r o

f f
re

qu
en

t N
D

I’s

Depth

60
36
24

(c)

10-1

100

101

102

103

 2 4 6 8 10

Ti
m

e
(s

ec
)

Depth

60
36
24

(d)

100

101

102

103

104

105

106

107

 2 4 6 8 10 12 14 16

N
um

be
r o

f f
re

qu
en

t N
D

I’s

Size of NDI’s

Apriori 60
NDI 60

NDI-hamc 60
Apriori 36

NDI 36
NDI-hamc 36

NDI 24

(e)

nr. of trans. 59 602
db. size 149 639
avg. trans. length 2.5
min. trans. length 1
max. trans. length 267
nr. of items 497
avg. item support 301
min. item support 1
max. item support 3658

(f)

Figure 5: BMS-Webview-1.

28

103

104

105

106

107

102103104

N
um

be
r o

f f
re

qu
en

t i
te

m
se

ts

Minimum Support

Apriori
NDI

NDI-hamc

(a)

101

102

103

102103104

Ti
m

e
(s

ec
)

Minimum Support

Apriori
NDI

NDI-All
NDI-hamc

NDI-hamc-All

(b)

103

104

105

106

107

 1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f f
re

qu
en

t N
D

I’s

Depth

5156
258

(c)

101

102

103

 1 2 3 4 5 6 7 8 9 10

Ti
m

e
(s

ec
)

Depth

5156
258

(d)

100

101

102

103

104

105

106

 2 4 6 8 10 12

N
um

be
r o

f f
re

qu
en

t N
D

I’s

Size of NDI’s

Apriori 5156
NDI 5156

NDI-hamc 5156
Apriori 258

NDI 258
NDI-hamc 258

(e)

nr. of trans. 515 597
db. size 3 367 020
avg. trans. length 6.5
min. trans. length 1
max. trans. length 164
nr. of items 1 657
avg. item support 2032
min. item support 1
max. item support 308 656

(f)

Figure 6: BMS-POS

29

101

102

103

104

105

106

107

102103104

N
um

be
r o

f f
re

qu
en

t i
te

m
se

ts

Minimum Support

Apriori
NDI

NDI-hamc

(a)

100

101

102

103

102103104

Ti
m

e
(s

ec
)

Minimum Support

Apriori
NDI

NDI-All
NDI-hamc

NDI-hamc-All

(b)

104

105

106

107

 1 2 3 4 5 6 7 8

N
um

be
r o

f f
re

qu
en

t N
D

I’s

Depth

1000
500
250

(c)

101

102

103

 1 2 3 4 5 6 7 8

Ti
m

e
(s

ec
)

Depth

1000
500
250

(d)

100

101

102

103

104

105

106

 2 4 6 8 10 12 14 16 18

N
um

be
r o

f f
re

qu
en

t N
D

I’s

Size of NDI’s

Apriori 1000
NDI 1000

NDI-hamc 1000
Apriori 500

NDI 500
NDI-hamc 500

NDI 250

(e)

nr. of trans. 100 000
db. size 3 960 507
avg. trans. length 39.6
min. trans. length 4
max. trans. length 77
nr. of items 942
avg. item support 4 204
min. item support 5
max. item support 28 738

(f)

Figure 7: T40I10D100K

30

103

104

105

106

107

100101102103104

N
um

be
r o

f f
re

qu
en

t i
te

m
se

ts

Minimum Support

Apriori
NDI

NDI-hamc

(a)

10-1

100

101

102

103

100101102103104

Ti
m

e
(s

ec
)

Minimum Support

Apriori
NDI

NDI-All
NDI-hamc

NDI-hamc-All

(b)

103

104

105

106

107

 1 2 3 4 5 6 7 8 9

N
um

be
r o

f f
re

qu
en

t N
D

I’s

Depth

1625
406

8

(c)

10-1

100

101

102

103

 1 2 3 4 5 6 7 8 9

Ti
m

e
(s

ec
)

Depth

1625
406

8

(d)

100

101

102

103

104

105

106

 2 4 6 8 10 12 14 16 18

N
um

be
r o

f f
re

qu
en

t N
D

I’s

Size of NDI’s

Apriori 1625
NDI 1625

NDI-hamc 1625
Apriori 406

NDI 406
NDI-hamc 406

NDI 8
NDI-hamc 8

(e)

nr. of trans. 8 124
db. size 186 852
avg. trans. length 23
min. trans. length 23
max. trans. length 23
nr. of items 119
avg. item support 1 570
min. item support 4
max. item support 8 124

(f)

Figure 8: Mushroom

31

102

103

104

105

106

103104105

N
um

be
r o

f f
re

qu
en

t i
te

m
se

ts

Minimum Support

Apriori
NDI

NDI-hamc

(a)

100

101

102

103

103104105

Ti
m

e
(s

ec
)

Minimum Support

Apriori
NDI

NDI-All
NDI-hamc

NDI-hamc-All

(b)

102

103

104

105

106

 1 2 3 4 5 6

N
um

be
r o

f f
re

qu
en

t N
D

I’s

Depth

64179
54046
6756

(c)

100

101

102

103

 1 2 3 4 5 6

Ti
m

e
(s

ec
)

Depth

64179
54046
6756

(d)

100

101

102

103

104

105

106

 2 4 6 8 10 12 14 16

N
um

be
r o

f f
re

qu
en

t N
D

I’s

Size of NDI’s

Apriori 64179
NDI 64179

NDI-hamc 64179
Apriori 54046

NDI 54046
NDI-hamc 54046

NDI 6756
NDI-hamc 6756

(e)

nr. of trans. 67 557
db. size 2 904 951
avg. trans. length 43
min. trans. length 43
max. trans. length 43
nr. of items 129
avg. item support 22 519
min. item support 18
max. item support 67 473

(f)

Figure 9: Connect-4

32

101

102

103

104

105

106

2·1043·1044·1045·104

N
um

be
r o

f f
re

qu
en

t i
te

m
se

ts

Minimum Support

Apriori
NDI

NDI-hamc

(a)

100

101

102

103

2·1043·1044·1045·104

Ti
m

e
(s

ec
)

Minimum Support

Apriori
NDI

NDI-All
NDI-hamc

NDI-hamc-All

(b)

101

102

103

104

105

 1 2 3 4 5 6 7

N
um

be
r o

f f
re

qu
en

t N
D

I’s

Depth

46594
39237
26975

(c)

100

101

102

103

 1 2 3 4 5 6 7

Ti
m

e
(s

ec
)

Depth

46594
39237
26975

(d)

100

101

102

103

104

105

 2 4 6 8 10 12 14

N
um

be
r o

f f
re

qu
en

t N
D

I’s

Size of NDI’s

Apriori 46594
NDI 46594

NDI-hamc 46594
Apriori 39237

NDI 39237
NDI-hamc 39237

NDI 26975
NDI-hamc 26975

(e)

nr. of trans. 49 046
db. size 3 629 404
avg. trans. length 74
min. trans. length 74
max. trans. length 74
nr. of items 2 113
avg. item support 1 718
min. item support 1
max. item support 48 944

(f)

Figure 10: PUMSB

33

preliminary results on how to solve this.

Acknowledgements

Toon Calders is funded by the Fund for Scientific Research - Flanders (FWO-
Vlaanderen) as a post-doctoral fellow. This work has been partially funded by
the EU contract IQ FP6-516169.

References

Agrawal, R., T. Imilienski, and A. Swami (1993). Mining association rules
between sets of items in large databases. In Proc. ACM SIGMOD Int.
Conf. Management of Data, Washington, D.C., pp. 207–216.

Agrawal, R. and R. Srikant (1994). Fast algorithms for mining association
rules. In Proc. VLDB Int. Conf. Very Large Data Bases, Santiago, Chile,
pp. 487–499.

Bastide, Y., R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal (2000). Mining
frequent patterns with counting inference. SIGKDD Explorations 2 (2),
66–75.

Bayardo, R. J. (1998). Efficiently mining long patterns from databases. In
Proc. ACM SIGMOD Int. Conf. Management of Data, Seattle, Washing-
ton, pp. 85–93.

Bonferroni, C. (1936). Teoria statistica della classi e calcolo della probabilitá.
Publicazioni del R. Instituto Superiore di Scienze Economiche e Commer-
ciali di Firenze 8, 1–62.

Boulicaut, J., A. Bykowski, and C. Rigotti (2003). Free-sets: a condensed
representation of boolean data for the approximation of frequency queries.
Data Mining and Knowledge Discovery 4, 5–22.

Boulicaut, J.-F. and A. Bykowski (2000). Frequent closures as a concise rep-
resentation for binary data mining. In Proc. PaKDD Pacific-Asia Conf.
on Knowledge Discovery and Data Mining, pp. 62–73.

Boulicaut, J.-F., A. Bykowski, and C. Rigotti (2000). Approximation of fre-
quency queries by means of free-sets. In Proc. PKDD Int. Conf. Principles
of Data Mining and Knowledge Discovery, pp. 75–85.

Bykowski, A. and C. Rigotti (2001). A condensed representation to find fre-
quent patterns. In Proc. PODS Int. Conf. Principles of Database Systems,
pp. 267–273.

Bykowski, A. and C. Rigotti (2003). DBC: a condensed representation of fre-
quent patterns for efficient mining. Journal of Information Systems 28 (8),
949–977.

Calders, T. (2003a). Axiomatization and Deduction Rules for the Frequency
of Itemsets. Ph. D. thesis, University of Antwerp, Belgium.

Calders, T. (2003b). Deducing bounds on the support of itemsets. In Data-
base Technologies for Data Mining, Volume 2682 of LNCS, pp. 214–233.
Springer.

34

Calders, T. and B. Goethals (2002). Mining all non-derivable frequent item-
sets. In Proc. PKDD Int. Conf. Principles of Data Mining and Knowledge
Discovery, pp. 74–85. Springer.

Calders, T. and B. Goethals (2003). Minimal k-free representations of fre-
quent sets. In N. Lavrac, D. Gamberger, H. Blockeel, and L. Todorovski
(Eds.), Proc. PKDD Int. Conf. Principles of Data Mining and Knowledge
Discovery, Volume 2838 of Lecture Notes in Computer Science, pp. 71–82.
Springer-Verlag.

Calders, T. and B. Goethals (2005a). Depth-first non-derivable itemset min-
ing. In Proc. SIAM Int. Conf. on Data Mining.

Calders, T. and B. Goethals (2005b). Quick inclusion-exclusion. In Proceed-
ings ECML-PKDD 2005 Workshop Knowledge Discovery in Inductive
Databases, Volume 3933 of LNCS, pp. 86–103. Springer.

Dexters, N. and T. Calders (2004). Theoretical bounds on the size of con-
densed representations. In Proceedings ECML-PKDD 2004 Workshop
Knowledge Discovery in Inductive Databases, pp. 25–36.

Dobra, A. (2002). Statistical Tools for Disclosure Limitation in Multi-way
Contingency Tables. Ph. D. thesis, Department of Statistics, Carnegie
Mellon University.

Dobra, A. and S. Fienberg (2000). Bounds for cell entries in contingency
tables given marginal totals and decomposable graphs. Proceedings of the
National Academy of Sciences 97 (22), 11885–11892.

Dobra, A. and S. E. Fienberg (2001). Bounds for cell entries in contingency
tables induced by fixed marginal totals. UNECE Statistical Journal 18,
363–371.

Fienberg, S. E. (1998). Fréchet and bonferroni bounds for multi-way tables
of counts with applications to disclosure limitation. In Statistical Data
Protection (SDP-98), pp. 115–129. Eurostat.

Fréchet, M. (1951). Sur les tableaux de correlation dont les marges sont
donnés. Ann. Univ. Lyon Sect A, Series 3 14, 53–77.

Galambos, J. and I. Simonelli (1996). Bonferroni-type Inequalities with Ap-
plications. Springer.

Goethals, B., J. Muhonen, and H. Toivonen (2005). Nonderivable association
rules. In Proc. SIAM Int. Conf. on Data Mining.

Goethals, B. and M. Zaki (2004). Advances in frequent itemset mining im-
plementations: report on fimi’03. SIGKDD Explorations Newsletter 6 (1),
109–117.

Groth, D. and E. Robertson (2001). Discovering frequent itemsets in the pres-
ence of highly frequent items. In In Proceedings Workshop on Rule Based
Data Mining, in Conjunction with the 14th International Conference On
Applications of Prolog.

Han, J., J. Pei, and Y. Yin (2000). Mining frequent patterns without candi-
date generation. In Proc. ACM SIGMOD Int. Conf. Management of Data,
Dallas, TX, pp. 1–12.

35

Jaroszewicz, S. and D. A. Simivici (2002). Support approximations using
bonferroni-type inequalities. In Proc. PKDD Int. Conf. Principles of Data
Mining and Knowledge Discovery, pp. 212–224.

Jaroszewicz, S., D. A. Simivici, and I. Rosenberg (2002). An inclusion-
exclusion result for boolean polynomials and its applications in data min-
ing. In Proc. of the Discrete Mathematics in Data Mining Workshop,
SIAM Datamining Conference.

Jordan, C. (1927). The foundations of the theory of probability. Mat. Phys.
Lapok 34, 109–136.

Kahn, J., N. Linial, and A. Samorodnitsky (1996). Inclusion-exclusion: Exact
and approximate. Combinatorica 16, 465–477.

Kryszkiewicz, M. (2001). Concise representation of frequent patterns based
on disjunction-free generators. In Proc. IEEE Int. Conf. on Data Mining,
pp. 305–312.

Kryszkiewicz, M. and M. Gajek (2002a). Concise representation of fre-
quent patterns based on generalized disjunction-free generators. In Proc.
PaKDD Pacific-Asia Conf. on Knowledge Discovery and Data Mining,
pp. 159–171.

Kryszkiewicz, M. and M. Gajek (2002b). Why to apply generalized
disjunction-free generators representation of frequent patterns? In Proc.
International Syposium on Methodologies for Intelligent Systems, pp. 382–
392.

Mannila, H. and H. Toivonen (1996). Multiple uses of frequent sets and con-
densed representations. In Proc. KDD Int. Conf. Knowledge Discovery in
Databases.

Melkman, A. A. and S. E. Shimony (1997). A note on approximate inclusion-
exclusion. Discrete Applied Mathematics 73, 23–26.

Pasquier, N., Y. Bastide, R. Taouil, and L. Lakhal (1999). Discovering fre-
quent closed itemsets for association rules. In Proc. ICDT Int. Conf. Data-
base Theory, pp. 398–416.

Pei, J., G. Dong, W. Zou, and J. Han (2004). Mining condensed frequent-
pattern bases. Knowl. Inf. Syst. 6 (5), 570–594.

Pei, J., J. Han, and R. Mao (2000). Closet: An efficient algorithm for mining
frequent closed itemsets. In ACM SIGMOD Workshop on Research Issues
in Data Mining and Knowledge Discovery, Dallas, TX.

Zaki, M. (2000, May/June). Scalable algorithms for association mining. IEEE
Transactions on Knowledge and Data Engineering 12 (3), 372–390.

Zaki, M. and C. Hsiao (1999). ChARM: An efficient algorithm for closed
association rule mining. In Technical Report 99-10, Computer Science,
Rensselaer Polytechnic Institute.

Zaki, M., S. Parthasarathy, M. Ogihara, and W. Li (1997). New algorithms
for fast discovery of association rules. In D. Heckerman, H. Mannila, and
D. Pregibon (Eds.), Proceedings of the Third International Conference on
Knowledge Discovery and Data Mining, pp. 283–286. AAAI Press.

36

