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Abstract. Mining Frequent Itemsets is the core operation of many data
mining algorithms. This operation however, is very data intensive and
sometimes produces a prohibitively large output. In this paper we give
a complete set of rules for deducing tight bounds on the support of an
itemset if the supports of all its subsets are known. Based on the derived
bounds [l, u] on the support of a candidate itemset I, we can decide
not to access the database to count the support of I if l is larger than
the support threshold (I will certainly be frequent), or if u is below the
threshold (I will certainly fail the frequency test). We can also use the
deduction rules to reduce the size of an adequate representation of the
collection of frequent sets; all itemsets I with bounds [l, u], where l = u,
do not need to be stored explicitly. To assess the usability in practice, we
implemented the deduction rules and we present experiments on real-life
data sets.

1 Introduction

Mining frequent itemsets is a core operation in many data mining problems.
Since their introduction [1], many algorithms have been proposed to find frequent
itemsets, especially in the context of association rule mining [1, 2, 12].

The frequent itemset problem is stated as follows. Assume we have a finite
set of items I. A transaction is a subset of I, together with a unique identifier.
A transaction database D is a finite set of transactions. A subset of I is called an
itemset . We say that an itemset I is s-frequent in a transaction database D if the
number of transactions in D that contain all items of I is at least s. The number
of transactions that contain all items of I is called the absolute support of I.
The frequent itemset problem is, given a support threshold s and a transaction
database D, find all s-frequent itemsets. In the remainder of the paper, we will
always assume that we are working over a transaction database D with items in
I.

All algorithms for mining frequent itemsets rely heavily on the following
monotonicity principle [16] to prune the search space:

Let J ⊆ I be two itemsets. In every transaction database D, the support
of I will be at most as high as the support of J .
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Thus, based on the support of a set that is below the support threshold, we can
deduce, using the monotonicity rule, that also the support of its supersets will
be below the threshold. This simple rule of deduction has successfully been used
in practice. Because of the success of this simple rule, much more attention went
into efficient counting schemes than into finding additional ways to prune the
search space. The standard example of an algorithm exploiting this monotonicity
is the well-known Apriori-algorithm [2]. Apriori traverses the itemset-lattice level
by level; in the ith loop, itemsets of cardinality i are counted in the database.
Because of the monotonicity principle, all itemsets in loop i that have at least
one subset that failed the support-test can be pruned ; we know a priori that
they will be infrequent. In this way we will never count itemsets that could be
pruned using the monotonicity rule.

In this paper we present deduction rules, additional to the monotonicity rule,
that calculate lower and upper bounds on the support of a candidate. As such, we
continue work initiated in [9]. Based on the supports of all subsets of an itemset
I, the deduction rules we present, will compute bounds [l, u] on the support of I.
We show that the rules calculate the best possible such bounds; that is, both l
and u are possible as supports of I, and thus, the interval cannot be made more
tight. Based on these bounds we can limit the number of candidates we need to
count. For example, if l is above the support threshold, then we know without
counting its support in the database that I is frequent. If there is no need to
know the support of I exact, we can thus, in this case, omit counting I. If u is
below the threshold, then we know for sure that I is not frequent, and we can
prune it.

Besides reducing the number of candidate itemsets, we can also use the de-
duction rules to make concise representations [15] of the frequent itemsets. We
call an itemset derivable if its lower and upper bound are the same. Thus, an
itemset is derivable if its support is uniquely determined by the supports of
its subsets. Therefore, for the derivable itemsets, it is not necessary to count
their supports. There is also no need to store them; we can later always find
the missing supports with the deduction rules. Based on this observation, the
NDI-representation is defined. We shortly discuss relations with other concise
representations in the literature, including free sets [5], closed sets [18, 4, 19],
and disjunction-free sets [6].

The organization of the paper is as follows. In Section 2 we give an example
showing that the monotonicity rule is not complete for the deduction of supports.
This example also gives a sketch of the general approach we follow to derive the
deduction rules. In Section 3 we formally define important notions we will use
throughout the paper. In Section 4, the deduction rules are given, and it is
proven that they are complete. In Section 5 we present a concise representation
based on the deduction rules. Section 6 gives the results of experiments with the
deduction rules. In Section 7 we discuss related work and Section 8 concludes
the paper.



2 Motivating Example

Apriori does not prune perfectly. Consider the following database.

D =

TID Items
1 A, B
2 A,C
3 B, C

(1)

Suppose we are running the Apriori-algorithm on this database D with min-
imal absolute support equal to 1. Apriori starts with counting the supports of
the singleton-itemsets in C1 = {{A}, {B}, {C}}. Since they are all frequent, in its
second loop, Apriori will consider the candidates in C2 = {{A,B}, {A,C}, {B, C}}.
Again all candidates are frequent, and thus, Apriori counts C3 = {{A,B, C}} in
its third loop. However, the following observation shows that from the supports
counted so far, we can derive that {A,B,C} must be infrequent.

Let for each itemset I, FI(D) denote the set of transactions

FI(D) =def {(tid, I ′) ∈ D | I ′ = I} ,

and let fI be the cardinality of FI(D). Hence, in the database D given in (1),
FAB(D) = {(1, AB)}, FAC(D) = {(2, AC)}, and FBC(D) = {(3, BC)}. For all
other itemsets I, FI(D) is empty. Notice that {FI(D) | I ⊆ I} forms a partition
of D. This partition is illustrated in Fig. 1. The dots in this figure represent the
transactions of D. With every item a set is associated. The set associated with
item A consists of all transactions that contain A. The partition defined by the
sets FI(D) is indicated in the figure.
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Fig. 1. Partition of D.

The next lemma expresses the supports of the itemsets in function of the
numbers fI , I ⊆ I.

Lemma 1. For each itemset I,

support(I,D) =
∑

I⊆I′⊆I
fI′(D) .



Proof.

support(I,D) = |{(tid, I ′) ∈ D | I ⊆ I ′ ⊆ I}
=

∑

I⊆I′⊆I
|{(tid, I ′′) ∈ D | I ′′ = I ′}|

=
∑

I⊆I′⊆I
|FI′(D)| =

∑

I⊆I′⊆I
fI′(D) .

2

In Fig. 1, the grey region indicates the set of all transactions that contain
the itemset AB. The transactions that contain AB are exactly those of the form
(tid, {A,B}) and (tid, {A,B, C}). Hence, the set of transactions in D containing
AB is FAB(D) ∪ FABC(D).

In the running example, after the second loop, we have the following infor-
mation:

support({},D) = 3 support(A,D) = 2 support(B,D) = 2
support(C,D) = 2 support(AB,D) = 1 support(AC,D) = 1
support(BC,D) = 1

(2)

Therefore, the following equalities hold 1:




f{} + fA + fB + fC + fAB + fAC + fBC + fABC = 3 ({})
fA + fAB + fAC + fABC = 2 (A)
fB + fAB + fBC + fABC = 2 (B)
fC + fAC + fBC + fABC = 2 (C)
fAB + fABC = 1 (AB)
fAC + fABC = 1 (AC)
fBC + fABC = 1 (BC)

(3)

For example, the equation fA+fAB +fAC +fABC = 2 expresses that the support
of A equals 2. (3) expresses the same information as (2).

Furthermore, since fI = |FI |, it is also true that

f{}, fA, fB , fC , fAC , fBC , fAB , fABC ≥ 0 (4)

We now show how we can derive from (3) and (4) that fABC must be 0, and
hence that the support of ABC is 0. Rewriting (3) gives:





f{} = −fABC fAB = 1− fABC

fA = fABC fAC = 1− fABC

fB = fABC fBC = 1− fABC

fC = fABC

(5)

Since both f{} and fA are greater than or equal to 0 (Cfr. (4)), the first two lines
of (5) imply respectively fABC ≤ 0 and fABC ≥ 0. Thus, from the information
in (2), it can be derived that support(ABC,D) must be 0, and hence we know a
priori that ABC cannot be frequent. Nevertheless, Apriori does not prune ABC.
This example shows that pruning can be improved beyond monotonicity.
1 A similar representation is also used in [9, 7, 8].



3 Definitions

In this section we formalize the notions used in the example of last section. We
introduce support expressions to model information about the supports of the
itemsets. The notions of implication and tight implication express what can be
derived from a set of support expressions.

Definition 1. A support expression over I is an equality

support(I) = s ,

with I an itemset over I and s an integer greater than or equal to 0.
A transaction database D over I is said to satisfy a support expression

support(I) = s if and only if support(I,D) = s.
A transaction database is said to satisfy a set of support expressions S if and

only if it satisfies every expression in S. 2

During the execution of the Apriori-algorithm, the support of ever larger
itemsets is counted. In the theory we develop, the knowledge of the supports of
the itemsets accumulated in the previous counting steps is modelled as a set of
support expressions. In the example in Section 2, the knowledge given in (2) is
expressed by the following set of support expressions:

S =





support({}) = 3,
support(A) = 2, support(B) = 2, support(C) = 2,
support(AB) = 1, support(AC) = 1, support(BC) = 1



 .

In the candidate generation and pruning phases, it is decided which sets to
count in the next iteration. The decision of which sets will be counted is based
solely on the supports of the itemsets counted so far. For example, a set ABC
is a candidate in the next loop, only if all three sets AB, AC, and BC were
found frequent. If, for example, AB is infrequent, then it can be derived that the
support of ABC is below the support threshold as well. Indeed, from support
expression support(AB) = s it follows that the support of ABC must be in the
interval [0, s]. Such deductions are formalized as logical implication in the next
definition.

Definition 2. Let I be an itemset over I, and let l, u ≥ 0 be integers.
A set of support expressions S is said to imply bounds [l, u] on the support

of I, denoted S |= support(I) ∈ [l, u], if in every transaction database D that
satisfies S, l ≤ support(I,D) ≤ u holds.

The bounds [l, u] are said to be tight, denoted S |=tight support(I) ∈ [l, u], if
there does not exist a smaller interval [l′, u′] ⊂ [l, u] such that S |= support(I) ∈
[l′, u′]. 2

Implication denotes what we can derive from a set of support expressions. Given
a set of support expressions S, the deduction of support(I) ∈ [l, u] is correct —or
sound— if and only if it is true in every database that satisfies S.



Tight implication denotes that the bounds cannot be improved; S |=tight

support(I) ∈ [l, u] indicates that, given S, both support(I) = l as support(I) = u
are possible. Hence, based on S, we cannot improve the interval [l, u]. Therefore,
a deduction mechanism is complete if, given S and a target set I, it always
produces the tight interval for I.

Example 1.

S =





support({}) = 3,
support(A) = 2, support(B) = 2, support(C) = 2,
support(AB) = 1, support(AC) = 1, support(BC) = 1



 .

From the monotonicity rule we know that S |= support(ABC) ∈ [0, 1]. The
interval [0, 1] however, is not tight for the support of ABC. From the reasoning
in Section 2, we know that in every database that satisfies S, the support of
ABC must be 0. Hence, S |=tight support(ABC) ∈ [0, 0]. 2

The next lemma makes a similar connection between support expressions and
systems of linear inequalities as in the example in Section 2.

Lemma 2. Let S be a collection of support expressions over I. There exists a
transaction database D over I that satisfies S, if and only if the following system
of inequalities has an integer solution in the variables xI , I ⊆ I:

Sys(S) =def





xI ≥ 0 ∀I ⊆ I∑

I⊆I′⊆I
xI′ = sI ∀(support(I) = sI) ∈ S

Proof. If: Consider an integer solution of Sys(S). In such a solution all xI ’s are
integers greater than or equal to 0. Let now D be the transaction database that
for all I ⊆ I contains xI transactions of the form (tid, I). Hence, for all I ⊆ I,
fI(D) = xI . Using Lemma 1, we obtain:

∀I ⊆ I : support(I,D) =
∑

I⊆I′⊆I
fI′(D) =

∑

I⊆I′⊆I
xI′ (6)

For all support expressions support(I) = sI in S, Sys(S) contains the equality∑
I⊆I′⊆I xI′ = sI , and hence, via (6), support(I,D) = sI . Thus, D satisfies S.

Only if: Let D be a transaction database that satisfies S. Then xI = fI(D), for
all I ⊆ I is an integer solution of the system Sys(S). Indeed, for all I, fI(D)
is greater than or equal to 0. Furthermore, since D satisfies S, for all support
expressions support(I) = sI in S, support(I,D) = sI . Because of Lemma 1,
support(I,D) =

∑
I⊆I′⊆I fI′(D), and hence

∑
I⊆I′⊆I fI′(D) = sI . 2

Example 2. There exists a transaction database D with support({},D) = 3,
support(A,D) = 2, support(B,D) = 2, and support(AB,D) = 0 if and only if
the following system of inequalities has a solution:





x{}, xA, xB , xAB ≥ 0 xB + xAB = 2
x{} + xA + xB + xAB = 3 xAB = 0
xA + xAB = 2



From the last three equalities we derive that xA = xB = 2, and xAB = 0.
This however conflicts with x{} + xA + xB + xAB = 3, since all variables must
be greater than or equal to 0. Hence, we conclude that there does not exist a
transaction database satisfying the given support expressions. 2

Problem Statement In the remainder we will concentrate on implication problems
for a set I, based on a set S of support expressions that contains exactly one
expression for each strict subset of I. We do not consider cases in which S
contains support expressions for supersets of I, or in which subsets are missing.
Hence, given an integer sJ for all J ⊂ I, tight implication of the following type
is studied:

{support(J) = sJ | J ⊂ I} |=tight support(I) ∈ [l, u] .

Notice that the information {support(J) = sJ | J ⊂ I} is available for every
candidate itemset I in the Apriori-algorithm.

4 Deduction Rules

In this section we describe sound and complete rules for deducing tight bounds
on the support of a set I if the supports of all its subsets are given. Because
we do not consider itemsets that are not subsets of I, we can assume that all
items in the database are elements of I. Since “projecting away” the other items
in a transaction database does not change the supports of subsets of I, we can
assume without loss of generality that I = I. The correctness of this observation
follows from the next lemma.

Definition 3. Let I ⊆ I be an itemset.

- The projection of a transaction (tid, I ′) over I on I, denoted πI(tid, I ′), is
the transaction (tid, I ′ ∩ I).

- The projection of a transaction database D over I on I, denoted πID, is
defined as πID =def {πIT | T ∈ D}.

Lemma 3. Let I be a set of items, and let J ⊆ I be itemsets. For every trans-
action database D over I it holds that

support(J,D) = support(J, πID) .

Proof. For J ⊆ I,

support(J,D) = |{(tid, I ′) ∈ D | J ⊆ I ′}|
= |{(tid, I ′) ∈ D | J ⊆ (I ′ ∩ I)}| (J ⊆ I)
= |{(tid, I ′′) ∈ πID | J ⊆ I ′′}|
= support(J, πID)

2



This lemma allows for an important reduction of the system Sys(S) associated
with a set of support expressions S that contains an expression for every strict
subset of I. Instead of having a variable xJ for every itemset J ⊆ I, with
Lemma 3 we can restrict the variables to only those xJ such that J ⊆ I.

Corollary 1. Given an itemset I ⊆ I, and integer sJ ≥ 0, for every J ⊆ I.
There exists a transaction database D satisfying ∀J ⊆ I : support(J,D) = sJ if
and only if the following system of inequalities has a solution:





xJ ≥ 0 ∀J ⊆ I∑

J⊆I′⊆I

xI′ = sJ ∀J ⊆ I

Proof. Because of Lemma 3, the existence of a database D over I satisfying the
given expressions implies the existence of such a database over I, namely πID.
The corollary now follows from Lemma 2. 2

Let I ⊆ I be an itemset. We assume that all supports of the strict subsets J
of I are known, let sJ denote support(J,D). We will now derive optimal bounds
on the support of I. These bounds can be determined as follows: the best possible
lower bound is the smallest integer l such that the system of support expressions

{support(J) = sJ | J ⊂ I} ∪ {support(I) = l}
is satisfiable. The best upper bound is the largest integer u such that

{support(J) = sJ | J ⊂ I} ∪ {support(I) = u}
is satisfiable. Let now sI be an arbitrary integer. From Corollary 1, we know
that the system of support constraints

{support(J) = sJ | J ⊂ I} ∪ {support(I) = sI}
is satisfiable if and only if the following system of inequalities has an integer
solution: 




xJ ≥ 0 ∀J ⊆ I∑

J⊆I′⊆I

xI′ = sJ ∀J ⊆ I

This system can be solved for the xJ ’s as follows:



sI = xI

sI−A = xI + xI−A

sI−B = xI + xI−B

sI−AB = xI + xI−A

+xI−B + xI−AB

. . .

→





xI = sI

sI−A = xI + xI−A

sI−B = xI + xI−B

sI−AB = xI + xI−A

+xI−B + xI−AB

. . .

→





xI = sI

xI−A = sI−A − sI

xI−B = sI−B − sI

sI−AB = xI + xI−A

+xI−B + xI−AB

. . .

→





xI = sI

xI−A = sI−A − sI

xI−B = sI−B − sI

xI−AB = sI−AB − sI−A

−sI−B + sI−AB

. . .



In general, xJ =
∑

J⊆J ′⊆I(−1)|J
′−J|sJ′ , as the following lemma shows.

Lemma 4. Let I be an itemset, and for all J ⊆ I, sJ , xJ be integers. The
following are equivalent

(1) ∀J ⊆ I : sJ =
∑

J⊆I′⊆I xI′

(2) ∀J ⊆ I : xJ =
∑

J⊆J′⊆I(−1)|J
′−J|sJ ′

(The proof of this lemma can be found in Appendix A.)

Therefore, the system of support constraints

{support(J) = sJ | J ⊂ I} ∪ {support(I) = sI}
is satisfiable if and only if the following system of inequalities has an integer
solution: 




xJ ≥ 0 ∀J ⊆ I

xJ =
∑

J⊆J′⊆I

(−1)|J
′−J|sJ ′ ∀J ⊆ I

Hence, if ∑

J⊆J ′⊆I

(−1)|J
′−J|sJ ′ ≥ 0 ∀J ⊆ I

or, equivalent,




sI ≤
∑

J⊆J ′⊂I

(−1)|I−J ′|+1sJ′ ∀J ⊆ I, |I − J | odd

sI ≥
∑

J⊆J ′⊂I

(−1)|I−J ′|+1sJ′ ∀J ⊆ I, |I − J | even

Let σI(J,D) denote the sum

σI(J,D) =def

∑

J⊆J′⊂I

(−1)|I−J′|+1support(J ′,D)

and let RI(J,D) denote the rule support(I) ≤ σI(J,D) if |I − J | is odd, and
support(I) ≥ σI(J,D) if |I − J | is even. We obtain the following theorem that
states that the bounds for itemset I found by the rules RI(J), for all J ⊆ I, are
the best bounds possible; that is, the interval found is tight.

Theorem 1. Let D be a transaction database, and let I be an itemset. sJ de-
notes support(J,D).

{support(J) = sJ | J ⊂ I} |=tight support(I) ∈ [l, u]

with
l = max{σI(J,D) | J ⊂ I, J even}
u = min{σI(J,D) | J ⊂ I, J odd}

Hence, the rules RI(J), J ⊆ I are sound and complete for implication of the
support of I, based on the supports of the strict subsets of I.
(The proof of this theorem can be found in Appendix A.)







support(ABCD) ≥ sABC + sABD + sACD + sBCD

−sAB − sAC − sAD − sBC − sBD − sCD

+sA + sB + sC + sD − 1
support(ABCD) ≤ sA − sAB − sAC − sAD + sABC + sABD + sACD

support(ABCD) ≤ sB − sAB − sBC − sBD + sABC + sABD + sBCD

support(ABCD) ≤ sC − sAC − sBC − sCD + sABC + sACD + sBCD

support(ABCD) ≤ sD − sAD − sBD − sCD + sABD + sACD + sBCD

support(ABCD) ≥ sABC + sABD − sAB

support(ABCD) ≥ sABC + sACD − sAC

support(ABCD) ≥ sABD + sACD − sAD

support(ABCD) ≥ sABC + sBCD − sBC

support(ABCD) ≥ sABD + sBCD − sBD

support(ABCD) ≥ sACD + sBCD − sCD

support(ABCD) ≤ sABC

support(ABCD) ≤ sABD

support(ABCD) ≤ sACD

support(ABCD) ≤ sBCD

support(ABCD) ≥ 0

Fig. 2. Tight bounds on support(ABCD)

The rules RABCD(J) have been given in Figure 2.

Example 3. Consider the following transaction database.

D =

TID items
1 A,B
2 A,C, D
3 A,B, D
4 C, D
5 B, C, D
6 A,D
7 B, D
8 B, C, D
9 B, C, D
10 A,B, C,D

s{} = 10, sA = 5, sB = 7,
sC = 6, sD = 9, sAB = 3,
sAC = 2, sAD = 4, sBC = 4,
sBD = 6, sCD = 6, sABC = 1,
sABD = 2, sACD = 2, sBCD = 4.

Figure 2 gives the rules to determine tight bounds on the support of ABCD.
Based on these deduction rules we derive the following bounds on the support
of ABCD without counting in the database D.

support(ABCD,D) ≥ 1 (Rule support(ABCD) ≥ sABC + sACD − sAC)
support(ABCD,D) ≤ 1 (Rule support(ABCD) ≤ sABC)

Therefore, we can conclude, without having to count, that the support of ABCD
in D must be 1. In the experiments we will see that this exactness is not very
unusual; even in real-life data, and for small itemsets, we will be able to derive
very narrow intervals. 2



5 Concise Representation

5.1 Derivable Itemsets

Definition 4. Let I be an itemset, and D a transaction database. Let for all
itemsets J ⊆ I, sJ denote support(J,D). We say that I is a derivable itemset
w.r.t. D, if

{support(J) = sJ | J ⊂ I} |=tight support(I) ∈ [sI , sI ]

2

Notice that I derivable means that we do not have to count I in the database
to know its support. Based on the supports of the subsets of I we can derive the
support of I exactly.

5.2 NDI-representation

Based on the notion of derivable itemsets we propose a concise representation.
A concise representation [15] is a subset of the set of frequent itemsets, extended
with supports, that allows for deriving the whole set of frequent sets and their
supports. Such a concise representation is typically much smaller than the whole
set of frequent itemsets, even though it contains the same amount of information.
Therefore, in situations where the number of frequent itemsets is very large, it
is often better to only mine a concise representation. Let [lI , uI ] be the bounds
we can derive for itemset I, based on the supports of its subsets. We now define
the NDI-representation as follows:

NDI(D, s) =def {(I, support(I,D)) | (lI 6= uI), support(I,D) ≥ s}.

That is, NDI only contains those sets that are both frequent in D and not
derivable w.r.t. D.

Theorem 2. Let D be a transaction database, and let s be a support threshold.
NDI(D, s) is a concise representation for the s-frequent itemsets in D.

5.3 Algorithm

In [8], the following theorem has been proven:

Theorem 3 (Anti-monotonicity of derivability). Let I ⊆ J be itemsets
over I, and D be a transaction database over I. If I is a derivable itemset, then
J must be a derivable itemset as well.

Based on this theorem we come up with the following algorithm to find all
frequent non-derivable itemsets.



(1) NDI(D,s)
(2) i := 1; NDI := {}; C1 := {{i} | i ∈ I};
(3) for all I in C1 do I.l := 0; I.u := |D|;
(4) while Ci not empty do
(5) Count the supports of all candidates in Ci in one pass over D;
(6) Fi := {I ∈ Ci | support(I,D) ≥ s};
(7) NDI := NDI ∪ Fi;
(8) PreCi+1 := AprioriGenerate(Fi);
(9) Ci+1 := {};
(10) for all J ∈ PreCi+1 do
(11) Compute bounds [l, u] on support of J ;
(12) if l 6= u then J.l := l;J.u := u; Ci+1 := Ci+1 ∪ {J};
(13) i := i + 1
(14) end while
(15) return NDI

For a more elaborated description of the algorithm we refer the interested
reader to [8].

6 Experiments

The experiments were performed on a 1.5GHz Pentium IV PC with 256MB
of main memory. To empirically evaluate the proposed NDI-algorithm and de-
duction rules, we performed several tests on the datasets summarized in the
following table. For each dataset the table shows the number of transactions,
the number of items, and the average transaction length.

Dataset # trans. # items Avg. length
BMS-POS 515 597 1 656 6.53
T40I10D100K 100 000 1 000 39.6
Connect-4 67 557 125 42
BMS-Webview-1 59 602 497 2.51
Pumsb 49 046 2 112 74
Mushroom 8 124 120 23

These datasets are all well-known benchmarks for frequent itemset mining.
The BMS-Webview and BMS-POS datasets are click-stream data from a small
dot-com company that no longer exists. These two datasets were donated to
the research community by Blue Martini Software. The Pumsb-dataset is based
on census data, the Mushroom dataset contains characteristics from different
species of mushrooms. The Connect-4 dataset contains different game positions.
The Pumsb dataset is available in the UCI KDD Repository [13], and the Mush-
room and Connect-4 datasets can be found in the UCI Machine Learning Reposi-
tory [3]. The T40I10D100K dataset was generated using the IBM synthetic data
generator.



The NDI-algorithm differs slightly from the algorithm presented in Section 5.
In order to avoid the generation of pairs of items in the second loop, the can-
didates are only generated while iterating over the dataset. In this way the
generation of pairs that do not appear in the database is avoided.

6.1 Overhead of Rule Evaluation

We first study the influence of limiting the depth of the rules we evaluate. In
Fig. 3, the number of sets that are derivable when we evaluate rules up to depth
k, and the time needed to find them are indicated for different k. As can be seen,
the number of NDIs drops quickly from depth 1 to depth 2. In the Mushroom
experiment, the test with k = 1 was even not feasible. From depth 3 on, higher
depths result in only a slight decrease of the number of NDIs. This is not that
remarkable since the number of NDIs of these sizes is small. The running times
in Fig. 3 show that for these limited depths, the cost of evaluating all rules is
rather small.
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Fig. 3. Size of the representations when k is limited.

In Tab. 1, four experiments with the BMS-POS dataset are reported in detail.
For each iteration of the algorithm, the number of candidates and the number
these candidates that turn out to be frequent NDIs are reported, together with
the computation time of respectively candidate generation with rule evaluation
and counting. In Tab. 1 (a) and (b), all rules are evaluated, while in Tab. 1
(c) and (d) no rules are evaluated. Hence, the experiments in Tab. 1 (c) and
(d) are in fact plain Apriori. The BMS-POS dataset is interesting, since it is
the only dataset that contains almost no derivable itemsets. Therefore, these
examples show very well the cost of evaluating the rules. The rule evaluation
time is included in the generation time for the candidates. Tab. 1 shows that
the evaluation times for the rules are very reasonable. This is especially so when
the number of transactions becomes very high. For iteration 2, the number of
candidates and the generation time of these candidates is not reported, because
they are generated on the fly to avoid pairs of items with support 0.



|Ck| |NDI| Width
1 1656 6.437s 510 0s 515597
2 9553 35.828s 116102
3 187839 6.625s 39912 80.859s 29167
4 157481 14.329s 74768 120.828s 11831
5 117797 28.437s 77353 126.922s 3462
6 62233 41.922s 47499 93.266s 998
7 18369 38.656s 16276 46.297s 250
8 2230 18s 2141 16.547s 88
9 10 1.906s 9 8.579s 19

268021 686.9

|Ck| |NDI| Width
1 1656 6.609s 461 36.047s 515597
2 7554 75.437s 116102
3 126338 4.719s 27904 103.188s 29167
4 95701 8.922s 46115 98.25s 11831
5 63578 15.5s 42047 67.641s 3462
6 29226 20.578s 22300 29.937s 998
7 7075 14.86s 6315 12.031s 250
8 704 5.234s 685 7.985s 88
9 1 0.343s 1 8.579s 9

153382 508.234s

(a) BMS-POS, support = 361, all rules (b) BMS-POS, support = 465, all rules

|Ck| |NDI| Width
1 1656 5.531s 510 0s n/a
2 9553 35.719s n/a
3 187839 5.031s 39912 80.672s n/a
4 157481 7.375s 74768 126s n/a
5 117929 8.984s 77361 128.484s n/a
6 63981 7.406s 47741 95.422s n/a
7 21335 3.812s 17293 49.203s n/a
8 3765 1.109s 3283 19.797s n/a
9 255 0.282s 228 9.625s n/a

270649 594.141s

|Ck| |NDI| Width
1 1656 5.5s 461 0s n/a
2 7554 34.86s n/a
3 126338 3.344s 27904 73.547s n/a
4 95701 4.359s 46115 102.469s n/a
5 63641 4.656s 42048 95.297s n/a
6 30114 3.421s 22341 63.532s n/a
7 7967 1.422s 6480 29.953s n/a
8 962 0.359s 849 13.079s n/a
9 30 0.188s 29 8.312s n/a

153781 453.093s

(c) BMS-POS, support = 361, no rules (d) BMS-POS, support = 465, no rules

Table 1. Example runs on the BMS-POS dataset.
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Fig. 4. Running time on the Mushroom dataset.

6.2 Comparison with Mining All Frequent Sets

Since the overhead of calculating the rules is small, the running times of the
Apriori-algorithm and the NDI-algorithm are almost linear in the size of their
respective output. Therefore, the gain in speed of the NDI-algorithm over the
extraction of all frequent itemsets with the Apriori-algorithm is more or less the
ratio between the number of frequent sets and the number of frequent NDIs. This
claim is supported by Fig. 4. In Fig. 4, the running time of the NDI-algorithm,
Apriori, and FPGrowth is given, together with the number of the frequent and
the non-derivable sets, for different minimal supports. In this example, the exe-
cution time of FPGrowth is much lower than for the other algorithms. As long
as the number of frequent sets is not too high, FPGrowth will be more efficient
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Fig. 5. Comparison of running times of NDI and FPGrowth.

than mining the NDIs. As soon as the number of frequent sets becomes very
high however, NDI will become more efficient.

Since in most of the experiments we present the number of frequent sets
is very high, the execution of the Apriori-algorithm was not always possible.
Instead we present a comparison with FPGrowth, and we report for some of the
experiments the number of frequent sets and the number of NDIs. The results
are presented in Fig. 5. For the Connect-4 and the Pumsb dataset it was not
possible to perform the FPGrowth algorithm within reasonable time for the
lowest supports.

In Fig. 5, it can clearly be seen that in most datasets once the support
threshold becomes too low, and the number of frequent sets explodes, the NDI-
algorithm becomes more efficient than mining all frequent itemsets. In Fig. 6,
the number of frequent NDIs is compared with the total number of frequent sets.
The only exceptional dataset in this perspective was the BMS-POS dataset, in
which the performance of the NDI and FPGrowth algorithms stays more or less
comparable. The explanation for this is in Tab. 1. In the BMS-POS dataset there
are almost no derivable itemsets of low cardinality.
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6.3 Comparison with Other Concise Representations

We compared the NDI-representation with the following other concise represen-
tations:

– Free sets representation FreeRep [5],
– Disjunction-free sets representation DFreeRep [6],
– Disjunction-free generators representation DFreeGenRep [14], and
– Closed sets representation Closed [18].

In Figure 7, the sizes of these representations and |NDI| are reported on dif-
ferent datasets. The experiments show that on these datasets, the NDI-represen-
tation is often the smallest representation. Only in the BMS-Webview-1 dataset,
the NDI-representation is slightly larger than the Closed sets representation.

7 Related Work

7.1 Concise Representations

Closed itemsets [18] received a lot of attention in the literature [4, 19, 20]. They
can be introduced as follows: the closure of an itemset I is the largest superset
of I such that its support equals the support of I. This superset is unique and
is denoted by cl(I). An itemset is called closed if it equals its closure. In [18],
the authors show that the set of frequent closed sets is a concise representation
for the frequent itemsets.

Free sets [5] or Generators [14] (Free sets [5] and generators [18, 14] are the
same.) An itemset I is called free if it has no subset with the same support. The
free-set representation is based on the fact that is support(A) = support(AB),
also support(AC) = support(ABC). This deduction can also be made with the
following two deduction rules presented in this paper:

support(ABC) ≤ support(AC) , and
support(ABC) ≥ support(AB) + support(AC)− support(A) .
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Fig. 7. Size of different concise representations.

Disjunction-free sets [6] or disjunction-free generators [14] are an extension of
free sets. A set I is called disjunction-free if there does not exist two items A,B
in I such that

support(I) = support(I −A) + support(I −B)− support(I −AB) .

Free sets are a special case of disjunction-free sets, namely when A = B. The
representation is based on the fact that when

support(ABC) = support(AB) + support(AC)− support(A) ,

it is also true that

support(ABCD) = support(ABD) + support(ACD)− support(AD) .

Again, this deduction follows from the rules presented in this paper:

sABCD ≥ sABD + sACD − sAD , and
sABCD ≤ sABC + sABD + sACD − sAB − sAC − sAD + sA .

7.2 Deduction

Another application of deduction rules is developed in [11]. Based on the obser-
vation that highly frequent items tend to blow up the output of a data mining



query by an exponential factor, the authors develop a technique to leave out
these highly frequent items, and to reintroduce them after the mining phase by
using a deduction rule, the multiplicative rule. The multiplicative rule can be
stated as follows: let I, J be itemsets, then

support(I ∪ J,D) ≥ support(I,D) + support(J,D)− support({},D) .

This rule can be derived from the rules in our framework.
Also in the field of artificial intelligence, much work has been done around

inferring knowledge. Interesting related work in artificial intelligence concen-
trates on logics for reasoning about probabilities, such as the probabilistic logic
of Nilsson [17] and of Fagin et al. [10].

8 Conclusions and Further Work

We presented sound and complete rules for deducing bounds on the support of
an itemset. These rules have many possible applications, such as improving the
pruning in the Apriori-algorithm, making concise representations, and deducing
the result of a data mining query based on previous query results. We evaluated
the rules against different real-life data set. The experiments showed the use-
fulness of the deduction rules for mining concise representations of the frequent
itemsets.

For the deduction rules presented in this paper, we need to know the supports
of all subsets exactly. Interesting further work includes finding deduction rules
for situations in which some of the subsets are missing, and when we only have
partial knowledge of the supports.
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A Proofs

Proof of Lemma 4

Proof. (1)⇒(2): Proof by induction on |I − J | that xJ =
∑

J⊂I′⊆I(−1)|I−J|sI′ .
Base case (J = I): for J = I, (2) reduces to xI = sI . xI = sI is also in (1).
General case (J arbitrary): By induction hypothesis, for all I ′, such that J ⊂
I ′ ⊆ I, xI′ =

∑
I′⊆J ′⊆I(−1)|J

′−I′|sJ′ . From (1) we know that
∑

J⊆I′⊆I

xI′ = sJ .

Hence,

xJ = sJ −
∑

J⊂I′⊆I

xI′ = sJ −
∑

J⊂I′⊆I

∑

I′⊆J ′⊆I

(−1)|J
′−I′|sJ′

= sJ −
∑

J⊂J′⊆I


 ∑

J⊂I′⊆J′
(−1)|J

′−I′|


 sJ ′



= sJ −
∑

J⊂J′⊆I


 ∑

J⊂I′⊆J′
(−1)|I

′−J|


 (−1)|J

′−J|sJ′

= sJ −
∑

J⊂J′⊆I

(∑

i=1

|J ′ − J |
( |J ′ − J |

i

)
(−1)i

)
(−1)|J

′−J|sJ ′

= sJ −
∑

J⊂J′⊆I


−1 +
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( |J ′ − J |
i
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(−1)i


 (−1)|J

′−J|sJ ′

= sJ +
∑

J⊂J′⊆I

(−1)|J
′−J|sJ ′ =

∑

J⊆J′⊆I

(−1)|J
′−J|sJ′

(2)⇒(1): Proof by induction on I − J that sJ =
∑

J⊆I′⊆I xI′ .
Base case (J = I): for J = I, (1) reduces to sI = xI . xI = sI is also in (2).
General case (J arbitrary): By induction hypothesis, for all J ′, such that
J ⊂ J ′ ⊆ I, sJ′ =

∑

J ′⊆I′⊆I

xI′ . Since xJ =
∑

J⊆J′⊆I(−1)|J
′−J|sJ′ , also

sJ = xJ −
∑

J⊂J′⊆I(−1)|J
′−J|sJ′ . Hence,

sJ = xJ −
∑

J⊂J′⊆I

(−1)|J
′−J| ∑

J ′⊆I′⊆I

xI′ = xJ −
∑

J⊂I′⊆I


 ∑

J⊂J′⊆I′
(−1)|J

′−J|


xI′

= xJ −
∑

J⊂I′⊆I

(−1)xI′ =
∑

J⊆I′⊆I

xI′

Proof of Theorem 1

Proof. By definition, the integers l, u such that [l, u] is the tight interval implied
for support(I) by {support(J) = sJ | J ⊂ I}, are the minimal and maximal
integer sI such that the system

S = {support(J) = sJ | J ⊂ I} ∪ {support(I) = sI}
is satisfiable. Using Corollary 1 and Lemma 4, we obtain that S has a solution
if and only if

xJ ≥ 0 ∀J ⊆ I

xJ =
∑

J⊆J′⊆I

(−1)|J
′−J|sJ ′ ∀J ⊆ I

has a solution. This system has a solution if and only if

sI ≤
∑

J⊆J ′⊂I

(−1)|I−J′|+1sJ′ ∀J ⊆ I, |I − J | odd

sI ≥
∑

J⊆J ′⊂I

(−1)|I−J′|+1sJ′ ∀J ⊆ I, |I − J | even

Hence, the maximal solution is the minimum of the upper bounds as given by
RI(J), J odd, and the minimal solution is the maximum of the lower bounds as
given by RI(J), J even. 2


