
Selective Introduction of Aspects for Program Comprehension

Andy Zaidman∗, Toon Calders+, Serge Demeyer∗, Jan Paredaens+

+ Advanced Database Research and Modelling (ADReM)
∗ Lab On Re-Engineering (LORE)

University of Antwerp
Department of Mathematics and Computer Science

Middelheimlaan 1, 2020 Antwerp, Belgium
{Andy.Zaidman, Toon.Calders, Serge.Demeyer, Jan.Paredaens}@ua.ac.be

Abstract

We propose a technique that uses webmining princi-
ples on event traces for uncovering important classes in
a system’s architecture. These classes can form starting
points for the program comprehension process. Further-
more, we argue that these important classes can be used to
define pointcuts for the introduction of aspects. Based on a
medium-scale case study – Apache Ant – and detailed archi-
tectural information from its developers, we show that the
important classes found by our technique are prime candi-
dates for the introduction of aspects.

1 Introduction

Program comprehension is the process of understanding
a system through feature and documentation analysis [11].
Gaining understanding of a program is a time-consuming
task taking up to 40% of the time-budget of a maintenance
operation [15]. The manner in which a programmer gets
understanding of a software system varies greatly and de-
pends on the individual, the magnitude of the program, the
level of understanding needed, the kind of system, ... [10]

Studies and experiments reveal that the success of de-
composing a program into effective mental models depends
on one’s general and program-specific domain knowledge.
While a number of different models for the cognition pro-
cess have been identified, most models fall into one of three
categories: top-down comprehension, bottom-up compre-
hension or a hybrid model combining the previous two
[12]. The top-down model is traditionally employed by
programmers with code domain familiarity. By drawing
on their existing domain knowledge, programmers are able

to efficiently reconcile application source code with system
goals. The bottom-up model is often applied by program-
mers working on unfamiliar code [4]. To comprehend the
application, they build mental models by evaluating pro-
gram code against their general programming knowledge
[11].

For large industrial-scale systems, the program compre-
hension process requires the inspection and study of a sig-
nificant number of packages, classes and code. As such,
a semi-automated process in which an analysis tool sup-
ports the identification of key classes in a system’s architec-
ture and presents these to the user suits the hybrid cognitive
model that is frequently used in large-scale systems [11].

Program understanding can be attained by using one of
several strategies, namely (1) static analysis, i.e., by exam-
ining the source code, (2) dynamic analysis, i.e., by exam-
ining the program’s behavior, or (3) a combination of both.
In the context of object-oriented systems, due to polymor-
phism, static analysis is often imprecise with regard to
the actual behavior of the application. Dynamic analy-
sis, however, allows to create an exact image of the pro-
gram’s intended runtime behavior. Our actual goal is to find
frequently occurring interaction patterns between classes.
These interaction patterns can help us (1) build up under-
standing of the software, and (2) locate candidate introduc-
tion points for aspects.

In this paper we propose a technique that applies
datamining techniques to event traces of program runs. As
such, our technique can be catalogued in the dynamic analy-
sis context. The technique we use was originally developed
to identify importanthubson the Internet, i.e., pages with
many links to authorative pages, based on only the links be-
tween web pages [9]. Hence, the Internet is viewed as a
large graph. We verify that important classes in the pro-



gram correspond to the hubs in the dynamic call-graph of a
program trace.

We apply the proposed technique to a medium-scale case
study, namely Apache Ant. The results show that thehubi-
nessis indeed a good measure for finding important classes
in the system’s architecture. Furthermore, based on these
results we verify the hypothesis that these classes are good
candidates for aspect introduction.

The organization of the paper is as follows. First, in Sec-
tion 2, we give an overview of the different steps in the pro-
cess and the different algorithms we use. Section 3 explains
the datamining algorithm in detail, while in Section 4 the
results of applying our technique on the case study are dis-
cussed. Section 5 explores related work, while Section 6
points to future research and concludes the paper.

2 Overview of our proposed technique

The technique we propose can be seen as a 4-step
process. In this section we explain each of the 4 steps.

Define execution scenario. Applying dynamic analy-
sis requires that the program is executed at least once. The
execution scenario, i.e., which functionality of the program
gets executed, is very important as it has a great influence
on the results of the technique. For example, if the software
engineer is reverse engineering a banking application and
more specifically wants to know the inner workings of how
interest rates are calculated, the execution scenario should
at least contain one interest rate calculation. Furthermore,
by keeping the execution scenario specific, i.e., only
calculating the interest rate, the final results will be more
precise.

Non-selective profiling. Once the execution scenario
has been defined, the program must be executed according
to the defined scenario. During the execution all calls to
and returns from methods are logged in the event trace. For
this step, we relied on a custom-made JVMPI1 profiler.
Please note however that even for small and medium-scale
software systems and precisely defined execution scenarios
event traces become very large (for our case study the trace
consisted of 24 270 064 events for an execution time of
23s).

Datamining. By examining the event trace we want
to discover the classes in the system that play an active role
in the execution scenario. Classes that have an active role
are classes that call upon many other classes to perform
functions for them.

In Figure 1 we show an example of acompacted

1Java Virtual Machine Profiler Interface: for more information see:
http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html

��������

	�
�

�������


�

�
������
��

�������������

�������������

���������������

����

�







Figure 1. A compacted call graph.

call graph. The compacted call graph is derived from the
dynamic call graph; it shows an edge between two classes
A → B if an instance of class A sends a message to an
instance of class B. The weights on the edges give an
indication of the tightness of the collaboration as it is the
number of unique messages that are sent between instances
of both classes.
This compacted call graph is the input to the datamining
algorithm that is presented in detail in section 3.

Selective introduction of aspects. The goal we wish
to attain is guiding the software engineer through the
software in order to help him/her in his/her program
comprehension process. Because the original event trace is
(1) too large to study directly (even in a visualized form),
and (2) shows too many unimportant sections, e.g. long
loops in the execution, we want to be able to deliver the
software engineer with a number ofslices of the trace
that form good starting points for program understanding
purposes.
To the user, these starting points can be:

• Pointers to classes: the user should begin his/her inves-
tigation from these classes and analyze them and their
collaborating classes manually.

• A visualization, e.g. an interaction diagram, of the
classes deemed important and their immediate collab-
orators. This set of classes can e.g. be found by intro-
ducing aspects with thecflow pointcut designator [8]
on all classes deemed important.

As a side effect of this heuristical detection of important
classes, we expect to find opportunities for aspect refactor-
ings [14, 13].

As validation we propose to verify whether the classes our
technique marks as important are also deemed important

2



1 2

4

3

5

Figure 2. Example web-graph

by the developers. Furthermore, we will also compare the
importance of these classes with theCoupling Between
Objects(CBO) metric [3]. CBO can be seen as a typical
static coupling measure which can help in identifying
classes with a coordinating role.

3 Applying webmining techniques for pro-
gram comprehension

In datamining, many successful techniques have been
developed to analyze the structure of the web [2, 5, 9]. Typ-
ically, these methods consider the Internet as a large graph,
in which, based solely on the hyperlink structure, important
web pages can be identified. In this section we show how
to apply these successful web mining techniques to a com-
pacted call graph of a program trace, in order to uncover
important classes.

First we introduce the HITS webmining-algorithm [9] to
identify so-called hubs and authorities on the web. Then,
the HITS algorithm is combined with the compacted call
graph. We argue that the classes that are associated with
good “hubs” in the compacted call graph are good candi-
dates for the introduction of aspects as well.

3.1 Identifying hubs in large webgraphs

In [9], the notions ofhubandauthoritywere introduced.
Intuitively, on the one hand, hubs are pages that rather re-
fer to pages containing information then being informative
themselves. Standard examples include web directories,
lists of personal pages, ... On the other hand, a page is
called an authority if it contains useful information. Hence,
a web-page is a good hub if it points to important informa-
tion pages, e.g., to good authorities. A page can be consid-
ered a good authority if it is referred to by many good hubs.
The HITS algorithm is based on this relation between hubs
and authorities.

Example Consider the webgraph given in Figure 2. In
this graph,2 and3 will be good authorities, and4 and5 will

be good hubs, and1 will be a less good hub. The authority
of 2 will be larger than the authority of3, because the only
in-links that they do not have in common are1 → 2 and
2 → 3, and1 is a better hub than2. 4 and5 are better hubs
than1, as they point to better authorities.

The HITS algorithm works as follows. Every pagei gets
assigned to it two numbers;ai denotes the authority of the
page, whilehi denotes the hubiness. Leti → j denote that
there is a hyperlink from pagei to pagej. The recursive
relation between authority and hubiness is captured by the
following formula’s.

hi =
∑
i→j

aj (1)

aj =
∑
i→j

hi (2)

The HITS algorithm starts with initializing allh’s anda’s
to 1, and repeatedly updates the values for all pages, using
the formula’s (1) and (2). If after each update the values are
normalized, this process converges to stable sets of author-
ity and hub weights [9].

It is also possible to add weights to the edges in the
graph. Adding weights to the graph can be interesting
to capture the fact that some edges are more important
than others. This extension only requires a small modi-
fication to the update rules. Letw[i, j] be the weight of
the edge from pagei to pagej. The update rules become
hi =

∑
i→j w[i, j] · aj andaj =

∑
i→j w[i, j] · hi.

Example For the graph given in 2, the hub and authority
weights converge to the following (normalized) values:

h1 = 64 a1 = 0
h2 = 48 a2 = 100
h3 = 0 a3 = 94
h4 = 100 a4 = 24
h5 = 100 a5 = 0

In the context of webmining, the identification of hubs
and authorities by the HITS algorithm has turned out to
be very useful. Because HITS only uses the links between
webpages, and not the actual content, it can be used on ar-
bitrary graphs to identify important hubs and authorities.

3.2 Identifying aspect candidates

Within our problem domain, hubs can be consideredco-
ordinating classes, while authorities correspond to classes
providing small functionalities that are used by many other
classes. As such, the hub classes play a pivotal role in a
system’s architecture. Therefore, hubs are excellent candi-
dates for the introduction of aspects to monitor the runtime
behavior of these coordinators.

3



Furthermore, by using thecflow pointcut designator,
we are not only able to monitor these coordinating classes,
but also the classes that get their orders from these coordi-
nators. This strategy can furthermore be used for efficient
dynamic slicing.

4 Case study – Apache Ant

Ant is an XML based Java build tool. We chose Apache
Ant 1.6.1 because we consider it to be a medium-size pro-
gram (98 681 LOC, 127 classes) and because of the ex-
tensive design information that is publicly made available
by the developers. As such we have clear evidence about
the classes the developers consider to be important2. This
knowledge will help us in validating our technique.

As execution scenario we have chosen to let Ant build
itself, i.e., we supplied the XML build file that comes with
the Apache Ant 1.6.1 source code edition. This scenario
was chosen because (1) the Ant build file is representative
for typical Ant functionality and (2) it allows for easy veri-
fication of the results presented in this paper.

We applied our technique two times on our case study.
The first time, we set the weights of the compacted call
graph all to 1, for the second experiment we used as weights
the number of methods called upon from another class; see
also Section 2.

In Table 1 we list the result of the first experiment. We
show the highest 15% of classes according to their hubiness.
We compare these classes with the CBO metric and with the
opinion of the Ant development team.

Figure 1 shows that:

• The number offalse positives, i.e. classes reported but
not considered important by the developers, is 6 out of
15 (40%). In the case of the CBO metric this amounts
to 7/12 (58%).

• False negativeson the other hand remain limited to just
1 out of 10. For the CBO metric this number equals 5
out of 10.

The number of false negatives can be considered very low
and shows the value of using our technique. The number of
false positives however is – at first sight – alarmingly high.
This can be attributed to several facts:

1. the developers opinion issubjectiveand only mentions
those classes (or constructions) they are most proud of
or they themselves find most interesting.

2. the classes our technique finds should also be consid-
ered important, albeit less important than those men-
tioned in the design documents.

2The design documentation of Ant can be found at:
http://codefeed.com/tutorial/antconfig.html

Class Proposed CBO Ant docs
algorithm

Project x x x
UnknownElement x x
AntTypeDefinition x
Task x x x
ComponentHelper x x
Main x x x
IntrospectionHelper x x x
AbstractFileSet x x
ProjectHelper x x x
RuntimeConfigurable x x
SelectSelector x
DirectoryScanner x
Target x x
TaskAdapter x
ElementHandler x x
FileUtils x
BaseSelectorContainer x
XMLCatalog x
AntClassLoader x
FilterChain x
TaskContainer x

Table 1. Correlation between hubiness, static
coupling, and expert opinion.

Close inspection of the project’s source code reveals that the
results can be explained by a mixture of the above reasons.
All classes that are highly-ranked through their hubiness are
in fact classes that have acoordinating rolein the system
and as such make them interesting for program comprehen-
sion purposes.

Furthermore, Table 1 shows there is a big difference in
precision with regard to the CBO metric.

The results of the second experiment, where we used
the real weights calculated during the transformation from
a call graph to a compacted call graph, are very similar. The
important classes are now however not strictly in the upper
15%, but more in the upper 25%. Furthermore, a number
of helper classes to the classes deemed important, now also
have a high degree of hubiness. This comes from the fact
that many of these helper classes make use of only a limited
number of classes, but do use a lot of different methods.
Hence, these helper classes do not use many other classes,
but the ones they do use, are used very intensively. This in-
tensity results in a large weight, which, on its turn, increases
the relative hubiness.

Keeping this in mind, we advocate the use of thecflow
pointcut on the important classes of the experiment with the
weights set to 1. This way, the helper classes will also be

4



touched by the pointcut.

5 Related work

Tourwé and Mens [13] describe an experiment in which
formal concept analysis is used to mine foraspectual views.
An aspectual view is a set of source code entities, such as
class hierarchies, classes and methods, that are structurally
related in some way, and often crosscut a particular applica-
tion. These aspectual views are used for aspect mining, but
also for program comprehension purposes.

Breu and Krinke experimented with finding sets of meth-
ods that are always executed in the same sequence [1]. They
argue that the found sets of classes are candidates for aspect
refactoring.

6 Conclusion and future work

In this paper, we proposed a technique that uses webmin-
ing principles for uncovering important classes in a system’s
architecture. We believe that the automatic classification of
classes w.r.t. their importance is a critical step in the identi-
fication of aspects candidates. A case study showed that the
approach is promising.

In the future, we will pursue the idea of applying
datamining techniques to uncover important trends and re-
lations in dynamic traces. First of all, we will continue the
work on the identification of uncovering important classes.
In the future we want to explore the connections and differ-
ences with other, dynamic or static, coupling metrics.

Besides the application of the HITS algorithm, there
are many other datamining techniques that might help the
analysis of large event traces. Especially because of the
potentially large scale of event traces, the use of scalable
datamining techniques seems very promising. The follow-
ing datamining techniques are good candidates for helping
the analysis of large event traces:

• Besides the hubs and authorities framework, there are
many other graph mining concepts that can be interest-
ing in the context of event traces. For example, Pager-
ank [2] is another method for ranking pages accord-
ing to importance. Also the identification of web com-
munities might prove useful in identifying classes or
methods that are intimately connected.

• The event trace is in fact a large call tree. There ex-
ist tree mining algorithms that search for frequent oc-
curring subtrees. The identification of such subtrees
allows for compacting the presentation of the event
trace [6].

• It can be interesting to find frequently occurring se-
quences in event traces. This problem might be solved
by applying episode mining algorithms.

As can be seen from this list of candidates, the possibil-
ities for applying datamining for automating program un-
derstanding are numerous. For an overview of the datamin-
ing techniques, see [7]. We believe this approach is very
promising, and therefore think that it can become an impor-
tant research direction.

References

[1] S. Breu and J. Krinke. Aspect mining using dynamic analy-
sis, 2003.

[2] S. Brin and L. Page. The anatomy of a large-scale hypertex-
tual web search engine.Computer Networks, 30(1-7):107–
117, 1998.

[3] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design.IEEE Transactons on Software En-
gineering, 20(6):476–493, 6 1994.

[4] S. Demeyer, S. Ducasse, and O. Nierstrasz.Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2003.

[5] D. Gibson, J. M. Kleinberg, and P. Raghavan. Inferring web
communities from link topology. InUK Conference on Hy-
pertext, pages 225–234, 1998.

[6] A. Hamoe-Lhadj and T. C. Lethbridge. An efficient al-
gorithm for detecting patterns in traces of procedure calls,
2003. Workshop on Dynamic Analysis.

[7] J. Han and M. Kamber.Data Mining: Concepts and Tech-
niques. Morgan Kaufmann, 2000.

[8] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. InProceedings ECOOP, volume 1241, pages
220–242. Springer-Verlag, 1997.

[9] J. M. Kleinberg. Authoritative sources in a hyperlinked en-
vironment.Journal of the ACM, 46(5):604–632, 1999.

[10] A. Lakhotia. Understanding someone else’s code: Analysis
of experiences.Journal of Systems and Software, pages 269–
275, Dec. 1993.

[11] D. Ng, D. R. Kaeli, S. Kojarski, and D. H. Lorenz. Pro-
gram comprehension using aspects. InICSE 2004 Workshop
WoDiSEE’2004, 2004.

[12] N. Pennington. Comprehension strategies in programming.
In Empirical studies of programmers: second workshop,
pages 100–113. Ablex Publishing Corp., 1987.

[13] T. Tourwe and K. Mens. Mining aspectual views using for-
mal concept analysis. InProceedings of SCAM Workshop.
IEEE, 2004.

[14] A. Van Deursen, M. Marin, and L. Moonen. Aspect mining
and refactoring. InProceedings of REFACE03, 2003.

[15] N. Wilde. Faster reuse and maintenance using software re-
connaissance, 1994. Technical Report SERC-TR-75F, Soft-
ware Engineering Research Center, CSE-301, University of
Florida, CIS Department, Gainesville, FL.

5


