
Applying Webmining Techniques to Execution Traces to Support the Program
Comprehension Process

Andy Zaidman∗, Toon Calders+, Serge Demeyer∗, Jan Paredaens+

+ Advanced Database Research and Modelling (ADReM)
∗ Lab On Re-Engineering (LORE)

University of Antwerp
Department of Mathematics and Computer Science

Middelheimlaan 1, 2020 Antwerp, Belgium
{Andy.Zaidman, Toon.Calders, Serge.Demeyer, Jan.Paredaens}@ua.ac.be

Abstract

Well-designed object-oriented programs typically con-
sist of a few key classes that work tightly together to provide
the bulk of the functionality. As such, these key classes are
excellent starting points for the program comprehension
process. We propose a technique that uses webmining
principles on execution traces to discover these important
and tightly interacting classes. Based on two medium-scale
case studies – Apache Ant and Jakarta JMeter – and
detailed architectural information from its developers, we
show that our heuristic does in fact find a sizeable number
of the classes deemed important by the developers.

Keywords
Reverse engineering, dynamic analysis, webmining, pro-
gram comprehension

1 Introduction

Reverse engineering is defined as the analysis of a sys-
tem in order to identify its current components and their de-
pendencies and to create abstractions of the systems design
[3]. A reverse engineering operation almost always takes
place in service of a specific purpose, such as re-engineering
to add a specific feature, maintenance to improve the effi-
ciency of a process, reuse of some of its modules in a new
system, etc.[23] In order to perform any of these operations
the software engineer must comprehend a given program
sufficiently well to plan, design and implement modifica-
tions and/or additions. As such, program comprehension

can be defined as the process the software engineer goes
through when studying the software artifacts, with as goal
the sufficient understanding of the system to perform the
required operations [18]. Such software artifacts could in-
clude the source code, documentation and/or abstractions
from the reverse engineering process.

Gaining understanding of a program is a time-consuming
task taking up to 40% of the time-budget of a maintenance
operation [26, 21, 4]. The manner in which a programmer
gets understanding of a software system varies greatly and
depends on the individual, the magnitude of the program,
the level of understanding needed, the kind of system, ...
[17, 28, 8, 22]

As such sizeable gains in overall efficiency can be at-
tained by providing assistance to the software (reverse) en-
gineer for his/her program understanding process. We pro-
pose a heuristic in this paper that can help the engineer with
finding important classes that should be looked at first when
starting the comprehension process.

Studies and experiments reveal that the success of de-
composing a program into effective mental models depends
on one’s general and program-specific domain knowledge
[25]. While a number of different models for the cogni-
tion process have been identified, most models fall into one
of three categories: top-down comprehension, bottom-up
comprehension or a hybrid model combining the previous
two [19]. The top-down model is traditionally employed
by programmers with code domain familiarity. By drawing
on their existing domain knowledge, programmers are able
to efficiently reconcile application source code with system
goals. The bottom-up model is often applied by program-
mers working on unfamiliar code [5]. To comprehend the
application, they build mental models by evaluating pro-

gram code against their general programming knowledge
[18].

Because of the human cognition process [28], program
understanding can never be a fully automated process: the
programmer should be free to explore the software, with the
help of specialized tools [9, 6]. These program exploration
tools should identify those parts of the program that are
likely to be interesting from a program understanding point
of view [14]. For instance, in the case of object-oriented
programs – which is the main focus of our work – program
exploration tools should reveal those classes that form core
parts of the design.

Orthogonal to the selection of the cognitive strategy, i.e.
which mental model to employ, is the choice between sev-
eral technical strategies, namely (1) static analysis, i.e., by
examining the source code, (2) dynamic analysis, i.e., by
examining the program’s behavior, or (3) a combination of
both.

In the context of object-oriented systems, due to poly-
morphism, static analysis is often imprecise with regard to
the actual behavior of the application [27]. Dynamic anal-
ysis, however, allows to create an exact image of the pro-
gram’s intended runtime behavior. Our actual goal is to find
frequently occurring interaction patterns between classes.
These interaction patterns can help us build up understand-
ing of the software.

In this paper we propose a technique that applies
datamining techniques to event traces of program runs. As
such, our technique can be catalogued in the dynamic analy-
sis context. The technique we use was originally developed
to identify importanthubson the Internet, i.e., pages with
many links to authorative pages, based on only the links be-
tween web pages [16]. Hence, the Internet is viewed as a
large graph. We verify that important classes in the pro-
gram correspond to the hubs in the dynamic call-graph of a
program trace.

We apply the proposed technique to two medium-scale
case studies, namely Apache Ant and Jakarta JMeter. The
results show that thehubinessis indeed a good measure for
finding important classes in the system’s architecture.

The organization of the paper is as follows. First, in Sec-
tion 2, we give an overview of the different steps in the pro-
cess and the different algorithms we use. Section 3 shows
how we plan to validate the results of our technique. Sec-
tion 4 explains the datamining algorithm in detail, while in
Section 5 the results of applying our technique on the two
case studies are discussed. Section 6 explores related work,
while Section 7 points to future research and concludes the
paper.

2 Overview of our proposed technique

The technique we propose can be seen as a 4-step pro-
cess. In this section we explain each of the 4 steps.

Define execution scenario. Applying dynamic analysis
requires that the program is executed at least once. The
execution scenario, i.e., which functionality of the program
gets executed, is very important as it has a great influence
on the results of the technique. For example, if the software
engineer is reverse engineering a banking application and
more specifically wants to know the inner workings of how
interest rates are calculated, the execution scenario should
at least contain one interest rate calculation.
On the other hand, by keeping the execution scenario spe-
cific, e.g. only calculating the interest rate, and not execut-
ing money transfers, the final results will be more precise.
In terms of UML, this would be the same as limiting the
number of use cases [13].

Non-selective profiling. Once the execution scenario has
been defined, the program must be executed according to
the defined scenario. During the execution all calls to and
returns from methods are logged in the event trace. For this
step, we relied on a custom-made JVMPI1 profiler.
Please note however that even for small and medium-scale
software systems and precisely defined execution scenarios,
event traces become very large. Table 1 gives an overview
of some metric-data for our two case studies.

Datamining. By examining the event trace we want to
discover the classes in the system that play an active role
in the execution scenario. Classes that have an active role
depend on many other classes to perform functions for
them.

In Figure 1 we show an example of acompacted
call graph. The compacted call graph is derived from the
dynamic call graph; it shows an edge between two classes
A → B if an instance of class A sends a message to an
instance of class B. The weights on the edges give an
indication of the tightness of the collaboration as it is the
number of distinct messages that are sent between instances
of both classes. More formally:

weight(A,B) = |
⋃
i,j

M(ai, bj)|

whereai andbj are instances of respectively classA and
classB andM(a, b) is the set of messages sent from a to b.

1Java Virtual Machine Profiler Interface: for more information see:
http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html

2

Apache Jakarta
Ant 1.6.1 JMeter 2.0.1

Classes 127 189
(traced)
Classes 1 216 245

(total)
Lines of 98 681 22 234

Code (LOC), total
Events 24 270 064 138 704

objects 18500 4180
at runtime

Scenario building Ant 1 simulation run
Execution time 23 s 82 s

(without tracing)

• The number of events as shown in Table 1 takes into
account both method entries and exits. As thus, the
number of method invocations is actually 50% of this
number.

• In the case of Apache Ant, we only took into account
the 127 core classes of Ant. Tracing all classes of
the Ant suite would take the number of participating
classes to around one thousand. The same reasoning
applies to the 189 core classes of Jakarta JMeter.

• What stands out is the big difference in the number of
events between Ant and JMeter even though the exe-
cution time for the latter is much longer. This can be
attributed to the fact that: (1) JMeter uses a lot of Java
base classes for e.g. network-related functionality and
(2) network-related operations can take a relatively
long time due to the uncertain network conditions.

Table 1. Size of an event trace of two medium-
size programs

This compacted call graph is the input to the datamining
algorithm that is presented in detail in section 4.

Interpretation of results. The goal we wish to attain
is guiding the software engineer through the software in
order to direct him/her in his/her program comprehension
process. Because the original event trace is (1) too large
to study directly (even in a visualized form), and (2)
shows too many unimportant sections, e.g. long loops in
the execution, we want to be able to deliver the software
engineer with a number ofslicesof the trace that form good
starting points for the program understanding process.

To the user, these starting points can be:

��������

	�
�

�������

�

�
������
��

�������������

�������������

���������������

����

�

Figure 1. A compacted call graph

• A list of key classes they should examine first. The
software engineer can then examine these key classes
through inspection of the code. This is astatical ap-
proachto interpreting the results.

• A visualization of these key classes and their immedi-
ately collaborating classes. These so-calledslices[20]
can e.g. be obtained through the use of aspect oriented
programming (AOP) [15]. The use of AOPpointcuts,
targets in the original source code where extra func-
tionality – calledadvice– allows for a more specific
trace to be constructed, i.e. a trace that focusses only
on interesting sections in program execution, but that
contains more detailed information, e.g. values of pa-
rameters, access to certain fields of the class, ...

3 Validation

As validation we propose to verify whether the classes
our technique marks as important are also deemed impor-
tant by the developers. For our two case studies we have
made sure that extensive design documentation is available
that covers not only the original design choices, but also
the architectural evolution throughout the life-cycle. This
documentation is normally intended for software engineers
willing to participate in the open-source development pro-
cess of both projects. As such, this kind of documentation
is meant to give a good high-level insight into the structure
and the working of the software for software engineers who
are new to the project. Because these novices are the in-
tended users of our technique, these design documents will
serve as validation for our results.

The public nature of the documentation furthermore
ensures repeatability of the experiments.

Our technique is concentrated around dynamic analy-
sis, because we believe that dynamic analysis is better at

3

capturing certain inter-class relationships, which are not
immediately evident from static examination of a software
project. In order to verify this claim, we also look at static
coupling measures. For this, we takeCoupling Between
Objects(CBO) [2] as a representative. CBO can be seen
as a typical static coupling measure which can help in
identifying classes with a coordinating role.
Chidamber and Kemerer [2] explain CBO as being:

CBO for a class is a count of the number of
other classes to which it is coupled. CBO relates
to the notion that an object is coupled to another
object if one of them acts on the other, i.e., meth-
ods of one use methods or instance variables of
another.

4 Webmining techniques

In datamining, many successful techniques have been
developed to analyze the structure of the web [1, 10, 16].
Typically, these methods consider the Internet as a large
graph, in which, based solely on the hyperlink structure,
important web pages can be identified. In this section we
show how to apply these successful web mining techniques
to a compacted call graph of a program trace, in order to
uncover important classes.

First we introduce the HITS webmining-algorithm [16]
to identify so-called hubs and authorities on the web.
Then, the HITS algorithm is combined with the compacted
call graph. We argue that the classes that are associated
with good “hubs” in the compacted call graph are good
candidates for early program understanding.

4.1 Identifying hubs in large webgraphs

In [16], the notions ofhub and authority were intro-
duced. Intuitively, on the one hand, hubs are pages that
rather refer to pages containing information then being in-
formative themselves. Standard examples include web di-
rectories, lists of personal pages, ... On the other hand, a
page is called an authority if it contains useful information.
Hence, a web-page is a good hub if it points to important
information pages, e.g., to good authorities. A page can be
considered a good authority if it is referred to by many good
hubs. The HITS algorithm is based on this relation between
hubs and authorities.

Example Consider the webgraph given in Figure 2. In
this graph,2 and3 will be good authorities, and4 and5 will
be good hubs, and1 will be a less good hub. The authority
of 2 will be larger than the authority of3, because the only
in-links that they do not have in common are1 → 2 and

1 2

4

3

5

Figure 2. Example web-graph

2 → 3, and1 is a better hub than2. 4 and5 are better hubs
than1, as they point to better authorities.

The HITS algorithm works as follows. Every pagei gets
assigned to it two numbers;ai denotes the authority of the
page, whilehi denotes the hubiness. Leti → j denote that
there is a hyperlink from pagei to pagej. The recursive
relation between authority and hubiness is captured by the
following formula’s.

hi =
∑
i→j

aj (1)

aj =
∑
i→j

hi (2)

The HITS algorithm starts with initializing allh’s anda’s
to 1, and repeatedly updates the values for all pages, using
the formula’s (1) and (2). If after each update the values
are normalized, this process converges to stable sets of
authority and hub weights [16].

It is also possible to add weights to the edges in the
graph. Adding weights to the graph can be interesting to
capture the fact that some edges are more important than
others. This extension only requires a small modification
to the update rules. Letw[i, j] be the weight of the
edge from pagei to pagej. The update rules become
hi =

∑
i→j w[i, j] · aj andaj =

∑
i→j w[i, j] · hi.

Example For the graph given in 2, the hub and authority
weights converge to the following (normalized) values:

h1 = 64 a1 = 0
h2 = 48 a2 = 100
h3 = 0 a3 = 94
h4 = 100 a4 = 24
h5 = 100 a5 = 0

In the context of webmining, the identification of hubs
and authorities by the HITS algorithm has turned out to
be very useful. Because HITS only uses the links between
webpages, and not the actual content, it can be used on ar-
bitrary graphs to identify important hubs and authorities.

4

4.2 Identifying key classes

Within our problem domain, hubs can be consideredco-
ordinating classes, while authorities correspond to classes
providing small functionalities that are used by many other
classes. As such, the hub classes play a pivotal role in a
system’s architecture. Therefore, hubs are excellent candi-
dates for beginning the program comprehension process or
for gaining quick and initial program understanding.

5 Case studies

5.1 Apache Ant

Introduction. Ant is an XML based Java build tool. We
chose Apache Ant 1.6.12 because we consider it to be a
medium-size program (see also Table 1) and because of the
extensive design information that is publicly made available
by the developers. As such we have clear evidence about
the classes the developers consider to be important3. This
knowledge will help us in validating our technique.

Execution scenario. As execution scenario we have cho-
sen to let Ant build itself, i.e., we supplied the XML build
file that comes with the Apache Ant 1.6.1 source code edi-
tion. This scenario was chosen because (1) the Ant build
file is representative for typical Ant functionality and (2) it
allows for easy verification of the results presented in this
paper.

Architectural overview. Now, with the help of the design
documentation, we will discuss the role the five classes that
are considered important by the architects, play in the exe-
cution of a build.xml file:

1. Project : Ant starts in the Main class and immedi-
ately creates aProject instance. With the help of
subsidiary objects, theProject instance parses the
build.xml file. The xml file containstargetsandele-
ments.

2. Target : this class acts as a placeholder for thetargets
specified in the build.xml file. Once parsing finishes,
the build model consists of a project, containing mul-
tiple targets – at least one, which is the implicit target
for top-level events.

3. UnknownElement : all the elements that
get parsed are temporarily stored in instances
of UnknownElement . During parsing the

2http://ant.apache.org/
3The design documentation of Ant can be found at:

http://codefeed.com/tutorial/antconfig.html

UnknownElements objects are stored in a tree-like
datastructure in theTarget to which they belong.
When the parsing phase is over and all dependencies
have been determined, themakeObject() method
of UnknownElement gets called, which instantiates
the right kind of object for the data that was kept in
the placeholder UnknownElement object.

4. RuntimeConfigurable : each
UnknownElement has a corresponding
RuntimeConfigurable , that contains the
element’s configuration information. The
RuntimeConfigurable objects are also stored in
trees in theTarget object they belong to.

5. Task is the superclass ofUnknownElement and
is also the baseclass for all types of tasks that are
created by calling themakeObject() method of
UnknownElement .

We tried to catch the relationship between those 5 classes in
Figure 3. Besides these 5 key classes, the design documen-
tation also mentions five other (helper)classes:
IntrospectionHelper
ProjectHelper2
ProjectHelperImpl
ElementHandler
Main

Project

Target

Task RuntimeConfigurable

UnknownElement

Figure 3. Simplified class diagram of Apache
Ant.

5

Discussion of results. We applied our technique to the
Apache Ant case study. Table 2 lists the results of this ex-
periment. It has the following 3 columns with results:

• Column 1: shows the 15% highest ranked classes ac-
cording to their hubiness.

• Column 2: shows the 15% highest scoring classes ac-
cording to the CBO metric.

• Column 3: showsall the classes deemed important by
the Ant development team. According to the devel-
opers these classes and their relationships need to be
understood before beginning any (re)engineering op-
eration on the project.

Class Proposed CBO Ant docs
algorithm

Project
√ √ √

UnknownElement
√ √

AntTypeDefinition
√

Task
√ √ √

ComponentHelper
√ √

Main
√ √ √

IntrospectionHelper
√ √ √

AbstractFileSet
√ √

ProjectHelper
√ √ √

RuntimeConfigurable
√ √ √

SelectSelector
√

DirectoryScanner
√

Target
√ √

TaskAdapter
√

ElementHandler
√ √

FileUtils
√

BaseSelectorContainer
√

XMLCatalog
√

AntClassLoader
√

FilterChain
√

ChainReaderHelper
√

Path
√

TaskContainer
√

Table 2. Correlation between hubiness, static
coupling, and expert opinion for Apache Ant.

Table 2 shows that:

• The number offalse positives, i.e. classes reported but
not considered important by the developers, is 6 out of
15 (40%) four our proposed technique. In the case of
the CBO metric this amounts to 9/15 (60%).

• False negatives, i.e. classes mentioned in the docu-
mentation but not identified by our technique, on the

other hand remain limited to just 1 out of 10 (10%)
for the webmining approach. For the CBO metric this
number equals 4 out of 10 (40%).

The number of false negatives can be considered very low
and shows the value of using our technique. The number of
false positives however is – at first sight – alarmingly high.
This can amongst others be attributed to the fact that the
classes reported by our technique should still be considered
important, albeit less important than those mentioned in the
design documents.

Close inspection of the project’s source code reveals that
the results of our technique can in fact be explained by this.
Most classes that are highly-ranked through their hubiness
are in fact classes that have acoordinating rolein the system
and as such make them interesting for program comprehen-
sion purposes.

Furthermore, Table 2 shows there is a big difference in
precision with regard to the CBO metric.

5.2 Jakarta JMeter

Introduction. Our second case study involved Apache
Jakarta JMeter 2.0.14. JMeter is a Java application designed
to load-test functional behavior and measure performance.
It is frequently used for testing webapplications, but it can
also handle SQL queries through JBDC and plugins can be
written for other network protocols.

JMeter is part of this study because of its extensive doc-
umentation. On top of the general-purposejavadocdoc-
umentation, there are also documents that contain informa-
tion on architectural design-choices, architectural evolution,
etc.5 This kind of documentation is helpful for (1) validat-
ing the results and (2) making the experiment repeatable.

Execution scenario. The execution scenario for this case
study consisted of testing a HTTP (HyperText Transfer
Protocol) connection toAmazon.com, a well-known online
shop. More precisely, we configured JMeter to test the
aforementioned connection 100 times and visualize the re-
sults in a simple graph. Running this scenario took 82 sec-
onds.

Architectural overview. What follows is a brief descrip-
tion of the innerworkings of JMeter:
TheTestPlanGUI is the component of the user-interface
that lets the end user add and customize tests. Each added
test resides in aJMeterGUIComponent class. When
the user has finished creating his or herTestPlan ,
the information from theJMeterGUIComponent s is

4http://jakarta.apache.org/jmeter/index.html
5The design documentation can be found on the Wiki pages of the

Jakarta JMeter project: http://wiki.apache.org/jakarta-jmeter

6

extracted and put intoTestElement classes.
These TestElement classes are stored in a tree-like
datastructureJMeterTreeModel . This datastructure is
then passed onto theJMeterEngine which, with the
help os theTestCompiler createsJMeterThread (s)
for each individual test. TheseJMeterThread s are
grouped into logicalThreadGroups . Furthermore, for
each test aTestListener is created: these catch the
results of the threads carrying out the actual tests.

As such, we’ve identified nine key classes from the
JMeter documentation. The design documentation also
mentions a number of important helper-classes, being:
AbstractAction
PreCompiler
Sampler
SampleResult
TestPlanGui

Discussion of results. For the JMeter case study we cal-
culated thehubinessof the compacted call graph taking
into account the weights on the edges of the compacted call
graph. The results of this effort are depicted in Table 3.

Just as we did for the previous case study, we count the
number of false positives and false negatives:

• The number offalse positives, i.e. classes reported but
not considered important by the developers, is 8 out of
21 (38%) four our proposed technique.. In the case of
the CBO metric this amounts to 16/21 (76%).

• False negatives, i.e. classes mentioned in the docu-
mentation but not identified by our technique, on the
other hand remain limited to just 1 out of 14 (7%)
for the webmining approach. For the CBO metric this
number equals 9 out of 14 (64%).

As is the case for the Apache Ant case study, the number
of false positives for Jakarta JMeter can be considered very
low. The number of false positives is slightly lower than for
our previous case study, but is still considered high. The
reasons for this high number of false positives can again be
attributed to the subjectiveness of what should be consid-
ered an important class (see also Section 5.1).

These results support our findings from the Apache Ant
case study.

5.3 Interpretation of results

The results of our two case studies are very similar:
the percentages of false positives and false negatives are
around 40% and 10% respectively. As such, both our case
studies support our initial hypothesis that important classes
in a system are the classes that exhibit a high degree of

Proposed JMeter
Class algorithm CBO design

docs
ArgumentsPanel

√

CompoundVariable
√

FunctionHelper
√

FilePanel
√

FileReporter
√

GuiPackage
√

JMeter
√

JMeterMenuBar
√

JMeterTest
√

JMeterTreeListener
√

MainFrame
√

MenuFactory
√

NamePanel
√

SimpleConfigGui
√

ValueReplacer
√

AbstractAction
√ √ √

JMeterEngine
√ √ √

JMeterTreeModel
√ √ √

TestPlanGui
√ √ √

ResultCollector
√ √

GenericController
√

Graph
√

ListenerNotifier
√

MonitorPerformancePanel
√

MultiProperty
√

TestElementProperty
√

Visualizer
√

TestElement
√ √

JMeterThread
√ √

PreCompiler
√ √

Sampler
√ √

SampleResult
√ √

TestCompiler
√ √

TestElement
√ √

TestPlan
√ √

ThreadGroup
√ √

JMeterGuiComponent
√ √

Table 3. Correlation between hubiness, static
coupling, and expert opinion for Jakarta JMe-
ter.

7

hubiness in the compacted call graph.

Within our heuristical approach we accept that the
number of false positives is fairly high. The number of
false negatives, however, is very low and as such, not many
important classes are missed by our heuristic. As such,
we believe that our heuristic is well-suited for providing a
quick answer to the software engineer as to which classes
should be looked first at when trying to understand a
program.

Furthermore, we believe that the heuristic we present
here, offers an opportunity to software (re)engineers to
become familiar with the software they need to understand
in a more efficient way.

6 Related work

Tourwé and Mens [24] describe an experiment in which
formal concept analysis is used to mine foraspectual
views. An aspectual view is a set of source code entities,
such as class hierarchies, classes and methods, that are
structurally related in some way, and often crosscut a
particular application. These aspectual views are used
for aspect mining, but also for program comprehension
purposes.

El-Ramly Et Al [7] describe a datamining technique
for detecting interaction patterns in run-time behavior.
Their initial focus is mainly on finding interaction patterns
between graphical user interface components as their
reengineering mission is a migration from a classical GUI
to a web-based interface.

A novel solution has been formulated by Hamou-Lhadj and
Lethbridge [11]. They represent the event trace as a tree
in which they search neighbouring isomorphic subtrees.
Identical neighbouring subtrees are pruned and replaced
with a single occurrence which gets annotated with the
total number of occurrences of the subtree. As such, they
are able to present the user with a compacted trace, undone
of loops.

7 Conclusion and future work

In this paper, we proposed a technique that uses web-
mining principles for uncovering important classes in a
system’s architecture. We believe that the automatic classi-
fication of classes w.r.t. their importance is a critical step in
alleviating the software engineer’s program comprehension
task. By allowing him/her to start his/her reconnaissance of
the software from important classes can result in a tangible
time-efficiency increase.

In the future, we will pursue the idea of applying
datamining techniques to uncover important trends and
relations in dynamic traces. First of all, we will continue
the work on the identification of uncovering important
classes. In the future we want to explore the connections
and differences with other, dynamic or static, coupling
metrics.

Besides the application of the HITS algorithm, there
are many other datamining techniques that might help
the analysis of large event traces. Especially because
of the potentially large scale of event traces, the use of
scalable datamining techniques seems very promising. The
following datamining techniques are good candidates for
helping the analysis of large event traces:

• Besides the hubs and authorities framework, there are
many other graph mining concepts that can be interest-
ing in the context of event traces. For example, Pager-
ank [1] is another method for ranking pages accord-
ing to importance. Also the identification of web com-
munities might prove useful in identifying classes or
methods that are intimately connected.

• It can be interesting to find frequently occurring se-
quences in event traces. This problem might be solved
by applying episode mining algorithms.

As can be seen from this list of candidates, the possibil-
ities for applying datamining for automating program un-
derstanding are numerous. For an overview of the datamin-
ing techniques, see [12]. We believe this approach is very
promising, and therefore think it should be explored further.

8 Acknowledgments

This work has been sponsored by the Belgian National
Fund for Scientific Research (FWO).

Further sponsorship comes from the Institute for the Pro-
motion of Innovation by Science and Technology in Flan-
ders under grants Architectural Resources for the Restruc-
turing and Integration of Business Applications (ARRIBA).

References

[1] S. Brin and L. Page. The anatomy of a large-scale hypertex-
tual web search engine.Computer Networks, 30(1-7):107–
117, 1998.

[2] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design.IEEE Transactons on Software En-
gineering, 20(6):476–493, 6 1994.

[3] E. J. Chikofsky and J. H. Cross II. Reverse engineering and
design recovery: A taxonomy.IEEE Software, pages 13–17,
Jan. 1990.

8

[4] T. Corbi. Program understanding: Challenge for the 90s.
IBM Systems Journal, 28(2):294–306, 1990.

[5] S. Demeyer, S. Ducasse, and O. Nierstrasz.Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2003.

[6] T. Eisenbarth, R. Koschke, and D. Simon. Aiding program
comprehension by static and dynamic feature analysis. In
ICSM, pages 602–611, 2001.

[7] M. El-Ramly, E. Stroulia, and P. Sorenson. From run-time
behavior to usage scenarios: an interaction-pattern mining
approach. InProceedings of the eighth ACM SIGKDD inter-
national conference on Knowledge discovery and data min-
ing, pages 315–324. ACM Press, 2002.

[8] H. Erdogmus and O. Tanir, editors.Advances in Software
Engineering: Comprehension, Evaluation, and Evolution,
chapter 3. Studies of the Work Practices of Software Engi-
neers, pages 50–74. Springer-Verlag, 2001. (Authors of
Chapter 3: T. Lethbridge and J. Singer).

[9] M. A. Foltz. Dr. jones: A software archaeologist’s magic
lens. http://citeseer.nj.nec.com/457040.html.

[10] D. Gibson, J. M. Kleinberg, and P. Raghavan. Inferring web
communities from link topology. InUK Conference on Hy-
pertext, pages 225–234, 1998.

[11] A. Hamoe-Lhadj and T. C. Lethbridge. An efficient al-
gorithm for detecting patterns in traces of procedure calls,
2003. Workshop on Dynamic Analysis.

[12] J. Han and M. Kamber.Data Mining: Concepts and Tech-
niques. Morgan Kaufmann, 2000.

[13] I. Jacobson.Object-Oriented Software Engineering: a Use
Case driven Approach. Addison–Wesley, Wokingham, Eng-
land, 1995.

[14] J. H. Jahnke and A. Walenstein. Reverse engineering tools
as media for imperfect knowledge. InProceedings of the
Seventh Working Conference on Reverse Engineering, pages
22–31. IEEE, 2000.

[15] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. InProceedings ECOOP, volume 1241, pages
220–242. Springer-Verlag, 1997.

[16] J. M. Kleinberg. Authoritative sources in a hyperlinked en-
vironment.Journal of the ACM, 46(5):604–632, 1999.

[17] A. Lakhotia. Understanding someone else’s code: Analysis
of experiences.Journal of Systems and Software, pages 269–
275, Dec. 1993.

[18] D. Ng, D. R. Kaeli, S. Kojarski, and D. H. Lorenz. Pro-
gram comprehension using aspects. InICSE 2004 Workshop
WoDiSEE’2004, 2004.

[19] N. Pennington. Comprehension strategies in programming.
In Empirical studies of programmers: second workshop,
pages 100–113. Ablex Publishing Corp., 1987.

[20] R. Smith and B. Korel. Slicing event traces of large software
systems. InAutomated and Algorithmic Debugging, 2000.

[21] D. Spinellis. Code Reading: The Open Source Perspective.
Addison-Wesley, 2003.

[22] M.-A. D. Storey, K. Wong, and H. A. M̈uller. How do
program understanding tools affect how programmers un-
derstand programs?Science of Computer Programming,
36(2–3):183–207, 2000.

[23] E. Stroulia and T. Systä. Dynamic analysis for reverse engi-
neering and program understanding.SIGAPP Appl. Comput.
Rev., 10(1):8–17, 2002.

[24] T. Tourwe and K. Mens. Mining aspectual views using for-
mal concept analysis. InProceedings of SCAM Workshop.
IEEE, 2004.

[25] A. von Mayrhauser and A. Marie Vans. Program compre-
hension during software maintenance and evolution.Com-
puter, 10(8):44–55, Aug. 1995.

[26] N. Wilde. Faster reuse and maintenance using software re-
connaissance, 1994. Technical Report SERC-TR-75F, Soft-
ware Engineering Research Center, CSE-301, University of
Florida, CIS Department, Gainesville, FL.

[27] N. Wilde and R. Huitt. Maintenance support for object-
oriented programs.IEEE Transactions on Software Engi-
neering, 18(12):1038–1044, 1992.

[28] I. Zayour and T. C. Lethbridge. Adoption of reverse engi-
neering tools: a cognitive perspective and methodology. In
Proceedings of the 9th International Workshop on Program
Comprehension, pages 245–255, 2001.

9

